\left\{ \begin{array} { l } { - 2 y - 3 z = 3 } \\ { - 3 y - 4 z = 3 } \end{array} \right.
Whakaoti mō y, z
y=3
z=-3
Tohaina
Kua tāruatia ki te papatopenga
-2y-3z=3,-3y-4z=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2y-3z=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
-2y=3z+3
Me tāpiri 3z ki ngā taha e rua o te whārite.
y=-\frac{1}{2}\left(3z+3\right)
Whakawehea ngā taha e rua ki te -2.
y=-\frac{3}{2}z-\frac{3}{2}
Whakareatia -\frac{1}{2} ki te 3+3z.
-3\left(-\frac{3}{2}z-\frac{3}{2}\right)-4z=3
Whakakapia te \frac{-3z-3}{2} mō te y ki tērā atu whārite, -3y-4z=3.
\frac{9}{2}z+\frac{9}{2}-4z=3
Whakareatia -3 ki te \frac{-3z-3}{2}.
\frac{1}{2}z+\frac{9}{2}=3
Tāpiri \frac{9z}{2} ki te -4z.
\frac{1}{2}z=-\frac{3}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
z=-3
Me whakarea ngā taha e rua ki te 2.
y=-\frac{3}{2}\left(-3\right)-\frac{3}{2}
Whakaurua te -3 mō z ki y=-\frac{3}{2}z-\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{9-3}{2}
Whakareatia -\frac{3}{2} ki te -3.
y=3
Tāpiri -\frac{3}{2} ki te \frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=3,z=-3
Kua oti te pūnaha te whakatau.
-2y-3z=3,-3y-4z=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}3\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right))\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\z\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-3\\-3&-4\end{matrix}\right))\left(\begin{matrix}3\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-2\left(-4\right)-\left(-3\left(-3\right)\right)}&-\frac{-3}{-2\left(-4\right)-\left(-3\left(-3\right)\right)}\\-\frac{-3}{-2\left(-4\right)-\left(-3\left(-3\right)\right)}&-\frac{2}{-2\left(-4\right)-\left(-3\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}4&-3\\-3&2\end{matrix}\right)\left(\begin{matrix}3\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}4\times 3-3\times 3\\-3\times 3+2\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\z\end{matrix}\right)=\left(\begin{matrix}3\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
y=3,z=-3
Tangohia ngā huānga poukapa y me z.
-2y-3z=3,-3y-4z=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\left(-2\right)y-3\left(-3\right)z=-3\times 3,-2\left(-3\right)y-2\left(-4\right)z=-2\times 3
Kia ōrite ai a -2y me -3y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
6y+9z=-9,6y+8z=-6
Whakarūnātia.
6y-6y+9z-8z=-9+6
Me tango 6y+8z=-6 mai i 6y+9z=-9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9z-8z=-9+6
Tāpiri 6y ki te -6y. Ka whakakore atu ngā kupu 6y me -6y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
z=-9+6
Tāpiri 9z ki te -8z.
z=-3
Tāpiri -9 ki te 6.
-3y-4\left(-3\right)=3
Whakaurua te -3 mō z ki -3y-4z=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-3y+12=3
Whakareatia -4 ki te -3.
-3y=-9
Me tango 12 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -3.
y=3,z=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}