\left\{ \begin{array} { l } { - 2 x + 3 y = 9 } \\ { 7 x - 9 y = - 31 } \end{array} \right.
Whakaoti mō x, y
x=-4
y=\frac{1}{3}\approx 0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x+3y=9,7x-9y=-31
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+3y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-3y+9
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-3y+9\right)
Whakawehea ngā taha e rua ki te -2.
x=\frac{3}{2}y-\frac{9}{2}
Whakareatia -\frac{1}{2} ki te -3y+9.
7\left(\frac{3}{2}y-\frac{9}{2}\right)-9y=-31
Whakakapia te \frac{-9+3y}{2} mō te x ki tērā atu whārite, 7x-9y=-31.
\frac{21}{2}y-\frac{63}{2}-9y=-31
Whakareatia 7 ki te \frac{-9+3y}{2}.
\frac{3}{2}y-\frac{63}{2}=-31
Tāpiri \frac{21y}{2} ki te -9y.
\frac{3}{2}y=\frac{1}{2}
Me tāpiri \frac{63}{2} ki ngā taha e rua o te whārite.
y=\frac{1}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{2}\times \frac{1}{3}-\frac{9}{2}
Whakaurua te \frac{1}{3} mō y ki x=\frac{3}{2}y-\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1-9}{2}
Whakareatia \frac{3}{2} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4
Tāpiri -\frac{9}{2} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4,y=\frac{1}{3}
Kua oti te pūnaha te whakatau.
-2x+3y=9,7x-9y=-31
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-31\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&3\\7&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\7&-9\end{matrix}\right))\left(\begin{matrix}9\\-31\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-2\left(-9\right)-3\times 7}&-\frac{3}{-2\left(-9\right)-3\times 7}\\-\frac{7}{-2\left(-9\right)-3\times 7}&-\frac{2}{-2\left(-9\right)-3\times 7}\end{matrix}\right)\left(\begin{matrix}9\\-31\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&1\\\frac{7}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}9\\-31\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 9-31\\\frac{7}{3}\times 9+\frac{2}{3}\left(-31\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\\frac{1}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=\frac{1}{3}
Tangohia ngā huānga poukapa x me y.
-2x+3y=9,7x-9y=-31
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\left(-2\right)x+7\times 3y=7\times 9,-2\times 7x-2\left(-9\right)y=-2\left(-31\right)
Kia ōrite ai a -2x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-14x+21y=63,-14x+18y=62
Whakarūnātia.
-14x+14x+21y-18y=63-62
Me tango -14x+18y=62 mai i -14x+21y=63 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
21y-18y=63-62
Tāpiri -14x ki te 14x. Ka whakakore atu ngā kupu -14x me 14x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=63-62
Tāpiri 21y ki te -18y.
3y=1
Tāpiri 63 ki te -62.
y=\frac{1}{3}
Whakawehea ngā taha e rua ki te 3.
7x-9\times \frac{1}{3}=-31
Whakaurua te \frac{1}{3} mō y ki 7x-9y=-31. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x-3=-31
Whakareatia -9 ki te \frac{1}{3}.
7x=-28
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 7.
x=-4,y=\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}