Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2a-b+8=0,a-2b+1=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2a-b+8=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
-2a-b=-8
Me tango 8 mai i ngā taha e rua o te whārite.
-2a=b-8
Me tāpiri b ki ngā taha e rua o te whārite.
a=-\frac{1}{2}\left(b-8\right)
Whakawehea ngā taha e rua ki te -2.
a=-\frac{1}{2}b+4
Whakareatia -\frac{1}{2} ki te b-8.
-\frac{1}{2}b+4-2b+1=0
Whakakapia te -\frac{b}{2}+4 mō te a ki tērā atu whārite, a-2b+1=0.
-\frac{5}{2}b+4+1=0
Tāpiri -\frac{b}{2} ki te -2b.
-\frac{5}{2}b+5=0
Tāpiri 4 ki te 1.
-\frac{5}{2}b=-5
Me tango 5 mai i ngā taha e rua o te whārite.
b=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a=-\frac{1}{2}\times 2+4
Whakaurua te 2 mō b ki a=-\frac{1}{2}b+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-1+4
Whakareatia -\frac{1}{2} ki te 2.
a=3
Tāpiri 4 ki te -1.
a=3,b=2
Kua oti te pūnaha te whakatau.
-2a-b+8=0,a-2b+1=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-8\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-2&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&-1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-\left(-1\right)}&-\frac{-1}{-2\left(-2\right)-\left(-1\right)}\\-\frac{1}{-2\left(-2\right)-\left(-1\right)}&-\frac{2}{-2\left(-2\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-8\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{1}{5}\\-\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-8\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-8\right)+\frac{1}{5}\left(-1\right)\\-\frac{1}{5}\left(-8\right)-\frac{2}{5}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
a=3,b=2
Tangohia ngā huānga poukapa a me b.
-2a-b+8=0,a-2b+1=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2a-b+8=0,-2a-2\left(-2\right)b-2=0
Kia ōrite ai a -2a me a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-2a-b+8=0,-2a+4b-2=0
Whakarūnātia.
-2a+2a-b-4b+8+2=0
Me tango -2a+4b-2=0 mai i -2a-b+8=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-b-4b+8+2=0
Tāpiri -2a ki te 2a. Ka whakakore atu ngā kupu -2a me 2a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5b+8+2=0
Tāpiri -b ki te -4b.
-5b+10=0
Tāpiri 8 ki te 2.
-5b=-10
Me tango 10 mai i ngā taha e rua o te whārite.
b=2
Whakawehea ngā taha e rua ki te -5.
a-2\times 2+1=0
Whakaurua te 2 mō b ki a-2b+1=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a-4+1=0
Whakareatia -2 ki te 2.
a-3=0
Tāpiri -4 ki te 1.
a=3
Me tāpiri 3 ki ngā taha e rua o te whārite.
a=3,b=2
Kua oti te pūnaha te whakatau.