\left\{ \begin{array} { l } { - 2 = 3 x + y } \\ { 2 = - 7 x + y } \end{array} \right.
Whakaoti mō x, y
x=-\frac{2}{5}=-0.4
y=-\frac{4}{5}=-0.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+y=-2
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-7x+y=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+y=-2,-7x+y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y-2
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y-2\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y-\frac{2}{3}
Whakareatia \frac{1}{3} ki te -y-2.
-7\left(-\frac{1}{3}y-\frac{2}{3}\right)+y=2
Whakakapia te \frac{-y-2}{3} mō te x ki tērā atu whārite, -7x+y=2.
\frac{7}{3}y+\frac{14}{3}+y=2
Whakareatia -7 ki te \frac{-y-2}{3}.
\frac{10}{3}y+\frac{14}{3}=2
Tāpiri \frac{7y}{3} ki te y.
\frac{10}{3}y=-\frac{8}{3}
Me tango \frac{14}{3} mai i ngā taha e rua o te whārite.
y=-\frac{4}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{10}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\left(-\frac{4}{5}\right)-\frac{2}{3}
Whakaurua te -\frac{4}{5} mō y ki x=-\frac{1}{3}y-\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4}{15}-\frac{2}{3}
Whakareatia -\frac{1}{3} ki te -\frac{4}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{2}{5}
Tāpiri -\frac{2}{3} ki te \frac{4}{15} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{2}{5},y=-\frac{4}{5}
Kua oti te pūnaha te whakatau.
3x+y=-2
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-7x+y=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+y=-2,-7x+y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}3&1\\-7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\-7&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\-7&1\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-7\right)}&-\frac{1}{3-\left(-7\right)}\\-\frac{-7}{3-\left(-7\right)}&\frac{3}{3-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&-\frac{1}{10}\\\frac{7}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-2\right)-\frac{1}{10}\times 2\\\frac{7}{10}\left(-2\right)+\frac{3}{10}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\-\frac{4}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{2}{5},y=-\frac{4}{5}
Tangohia ngā huānga poukapa x me y.
3x+y=-2
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-7x+y=2
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x+y=-2,-7x+y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+7x+y-y=-2-2
Me tango -7x+y=2 mai i 3x+y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x+7x=-2-2
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10x=-2-2
Tāpiri 3x ki te 7x.
10x=-4
Tāpiri -2 ki te -2.
x=-\frac{2}{5}
Whakawehea ngā taha e rua ki te 10.
-7\left(-\frac{2}{5}\right)+y=2
Whakaurua te -\frac{2}{5} mō x ki -7x+y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
\frac{14}{5}+y=2
Whakareatia -7 ki te -\frac{2}{5}.
y=-\frac{4}{5}
Me tango \frac{14}{5} mai i ngā taha e rua o te whārite.
x=-\frac{2}{5},y=-\frac{4}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}