\left\{ \begin{array} { l } { - 10 x + 3 y = - 2 } \\ { 4 x - y = 8 } \end{array} \right.
Whakaoti mō x, y
x=11
y=36
Graph
Tohaina
Kua tāruatia ki te papatopenga
-10x+3y=-2,4x-y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-10x+3y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-10x=-3y-2
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\frac{1}{10}\left(-3y-2\right)
Whakawehea ngā taha e rua ki te -10.
x=\frac{3}{10}y+\frac{1}{5}
Whakareatia -\frac{1}{10} ki te -3y-2.
4\left(\frac{3}{10}y+\frac{1}{5}\right)-y=8
Whakakapia te \frac{3y}{10}+\frac{1}{5} mō te x ki tērā atu whārite, 4x-y=8.
\frac{6}{5}y+\frac{4}{5}-y=8
Whakareatia 4 ki te \frac{3y}{10}+\frac{1}{5}.
\frac{1}{5}y+\frac{4}{5}=8
Tāpiri \frac{6y}{5} ki te -y.
\frac{1}{5}y=\frac{36}{5}
Me tango \frac{4}{5} mai i ngā taha e rua o te whārite.
y=36
Me whakarea ngā taha e rua ki te 5.
x=\frac{3}{10}\times 36+\frac{1}{5}
Whakaurua te 36 mō y ki x=\frac{3}{10}y+\frac{1}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{54+1}{5}
Whakareatia \frac{3}{10} ki te 36.
x=11
Tāpiri \frac{1}{5} ki te \frac{54}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=11,y=36
Kua oti te pūnaha te whakatau.
-10x+3y=-2,4x-y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-10&3\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-10&3\\4&-1\end{matrix}\right))\left(\begin{matrix}-10&3\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&3\\4&-1\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-10&3\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&3\\4&-1\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&3\\4&-1\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-10\left(-1\right)-3\times 4}&-\frac{3}{-10\left(-1\right)-3\times 4}\\-\frac{4}{-10\left(-1\right)-3\times 4}&-\frac{10}{-10\left(-1\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{3}{2}\\2&5\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-2\right)+\frac{3}{2}\times 8\\2\left(-2\right)+5\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\36\end{matrix}\right)
Mahia ngā tātaitanga.
x=11,y=36
Tangohia ngā huānga poukapa x me y.
-10x+3y=-2,4x-y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-10\right)x+4\times 3y=4\left(-2\right),-10\times 4x-10\left(-1\right)y=-10\times 8
Kia ōrite ai a -10x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -10.
-40x+12y=-8,-40x+10y=-80
Whakarūnātia.
-40x+40x+12y-10y=-8+80
Me tango -40x+10y=-80 mai i -40x+12y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-10y=-8+80
Tāpiri -40x ki te 40x. Ka whakakore atu ngā kupu -40x me 40x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-8+80
Tāpiri 12y ki te -10y.
2y=72
Tāpiri -8 ki te 80.
y=36
Whakawehea ngā taha e rua ki te 2.
4x-36=8
Whakaurua te 36 mō y ki 4x-y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=44
Me tāpiri 36 ki ngā taha e rua o te whārite.
x=11
Whakawehea ngā taha e rua ki te 4.
x=11,y=36
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}