\left\{ \begin{array} { l } { - ( - x - y ) - 4 ( y - x ) = 8 } \\ { 3 x - 1 + 2 ( y + 3 ) - 5 = 20 } \end{array} \right.
Whakaoti mō x, y
x=4
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\left(-x\right)+y-4\left(y-x\right)=8
Whakaarohia te whārite tuatahi. Hei kimi i te tauaro o -x-y, kimihia te tauaro o ia taurangi.
-\left(-x\right)+y-4y+4x=8
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te y-x.
-\left(-x\right)-3y+4x=8
Pahekotia te y me -4y, ka -3y.
x-3y+4x=8
Whakareatia te -1 ki te -1, ka 1.
5x-3y=8
Pahekotia te x me 4x, ka 5x.
3x-1+2y+6-5=20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+3.
3x+5+2y-5=20
Tāpirihia te -1 ki te 6, ka 5.
3x+2y=20
Tangohia te 5 i te 5, ka 0.
5x-3y=8,3x+2y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-3y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=3y+8
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(3y+8\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{3}{5}y+\frac{8}{5}
Whakareatia \frac{1}{5} ki te 3y+8.
3\left(\frac{3}{5}y+\frac{8}{5}\right)+2y=20
Whakakapia te \frac{3y+8}{5} mō te x ki tērā atu whārite, 3x+2y=20.
\frac{9}{5}y+\frac{24}{5}+2y=20
Whakareatia 3 ki te \frac{3y+8}{5}.
\frac{19}{5}y+\frac{24}{5}=20
Tāpiri \frac{9y}{5} ki te 2y.
\frac{19}{5}y=\frac{76}{5}
Me tango \frac{24}{5} mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\times 4+\frac{8}{5}
Whakaurua te 4 mō y ki x=\frac{3}{5}y+\frac{8}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{12+8}{5}
Whakareatia \frac{3}{5} ki te 4.
x=4
Tāpiri \frac{8}{5} ki te \frac{12}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=4
Kua oti te pūnaha te whakatau.
-\left(-x\right)+y-4\left(y-x\right)=8
Whakaarohia te whārite tuatahi. Hei kimi i te tauaro o -x-y, kimihia te tauaro o ia taurangi.
-\left(-x\right)+y-4y+4x=8
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te y-x.
-\left(-x\right)-3y+4x=8
Pahekotia te y me -4y, ka -3y.
x-3y+4x=8
Whakareatia te -1 ki te -1, ka 1.
5x-3y=8
Pahekotia te x me 4x, ka 5x.
3x-1+2y+6-5=20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+3.
3x+5+2y-5=20
Tāpirihia te -1 ki te 6, ka 5.
3x+2y=20
Tangohia te 5 i te 5, ka 0.
5x-3y=8,3x+2y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\3&2\end{matrix}\right))\left(\begin{matrix}8\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\times 3\right)}&-\frac{-3}{5\times 2-\left(-3\times 3\right)}\\-\frac{3}{5\times 2-\left(-3\times 3\right)}&\frac{5}{5\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{3}{19}\\-\frac{3}{19}&\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}8\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 8+\frac{3}{19}\times 20\\-\frac{3}{19}\times 8+\frac{5}{19}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=4
Tangohia ngā huānga poukapa x me y.
-\left(-x\right)+y-4\left(y-x\right)=8
Whakaarohia te whārite tuatahi. Hei kimi i te tauaro o -x-y, kimihia te tauaro o ia taurangi.
-\left(-x\right)+y-4y+4x=8
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te y-x.
-\left(-x\right)-3y+4x=8
Pahekotia te y me -4y, ka -3y.
x-3y+4x=8
Whakareatia te -1 ki te -1, ka 1.
5x-3y=8
Pahekotia te x me 4x, ka 5x.
3x-1+2y+6-5=20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y+3.
3x+5+2y-5=20
Tāpirihia te -1 ki te 6, ka 5.
3x+2y=20
Tangohia te 5 i te 5, ka 0.
5x-3y=8,3x+2y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3\left(-3\right)y=3\times 8,5\times 3x+5\times 2y=5\times 20
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x-9y=24,15x+10y=100
Whakarūnātia.
15x-15x-9y-10y=24-100
Me tango 15x+10y=100 mai i 15x-9y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y-10y=24-100
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=24-100
Tāpiri -9y ki te -10y.
-19y=-76
Tāpiri 24 ki te -100.
y=4
Whakawehea ngā taha e rua ki te -19.
3x+2\times 4=20
Whakaurua te 4 mō y ki 3x+2y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+8=20
Whakareatia 2 ki te 4.
3x=12
Me tango 8 mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 3.
x=4,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}