Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-y^{2}=x^{2}-\left(y-1\right)^{2}
Whakaarohia te whārite tuatahi. Whakaarohia te \left(x-y\right)\left(x+y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}=x^{2}-\left(y^{2}-2y+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-1\right)^{2}.
x^{2}-y^{2}=x^{2}-y^{2}+2y-1
Hei kimi i te tauaro o y^{2}-2y+1, kimihia te tauaro o ia taurangi.
x^{2}-y^{2}-x^{2}=-y^{2}+2y-1
Tangohia te x^{2} mai i ngā taha e rua.
-y^{2}=-y^{2}+2y-1
Pahekotia te x^{2} me -x^{2}, ka 0.
-y^{2}+y^{2}=2y-1
Me tāpiri te y^{2} ki ngā taha e rua.
0=2y-1
Pahekotia te -y^{2} me y^{2}, ka 0.
2y-1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2y=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
\left(x+\frac{1}{2}\right)\left(x+2\right)-x\times \frac{1}{2}=x^{2}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x^{2}+\frac{5}{2}x+1-x\times \frac{1}{2}=x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+\frac{1}{2} ki te x+2 ka whakakotahi i ngā kupu rite.
x^{2}+\frac{5}{2}x+1-\frac{1}{2}x=x^{2}
Whakareatia te -1 ki te \frac{1}{2}, ka -\frac{1}{2}.
x^{2}+2x+1=x^{2}
Pahekotia te \frac{5}{2}x me -\frac{1}{2}x, ka 2x.
x^{2}+2x+1-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
2x+1=0
Pahekotia te x^{2} me -x^{2}, ka 0.
2x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2} y=\frac{1}{2}
Kua oti te pūnaha te whakatau.