\left\{ \begin{array} { l } { ( x - y ) ( x + y ) = x ^ { 2 } - ( y - 1 ) ^ { 2 } } \\ { ( x + y ) ( x + 2 ) - x y = x ^ { 2 } } \end{array} \right.
Whakaoti mō x, y
x=-\frac{1}{2}=-0.5
y=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-y^{2}=x^{2}-\left(y-1\right)^{2}
Whakaarohia te whārite tuatahi. Whakaarohia te \left(x-y\right)\left(x+y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}=x^{2}-\left(y^{2}-2y+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-1\right)^{2}.
x^{2}-y^{2}=x^{2}-y^{2}+2y-1
Hei kimi i te tauaro o y^{2}-2y+1, kimihia te tauaro o ia taurangi.
x^{2}-y^{2}-x^{2}=-y^{2}+2y-1
Tangohia te x^{2} mai i ngā taha e rua.
-y^{2}=-y^{2}+2y-1
Pahekotia te x^{2} me -x^{2}, ka 0.
-y^{2}+y^{2}=2y-1
Me tāpiri te y^{2} ki ngā taha e rua.
0=2y-1
Pahekotia te -y^{2} me y^{2}, ka 0.
2y-1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2y=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
\left(x+\frac{1}{2}\right)\left(x+2\right)-x\times \frac{1}{2}=x^{2}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x^{2}+\frac{5}{2}x+1-x\times \frac{1}{2}=x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x+\frac{1}{2} ki te x+2 ka whakakotahi i ngā kupu rite.
x^{2}+\frac{5}{2}x+1-\frac{1}{2}x=x^{2}
Whakareatia te -1 ki te \frac{1}{2}, ka -\frac{1}{2}.
x^{2}+2x+1=x^{2}
Pahekotia te \frac{5}{2}x me -\frac{1}{2}x, ka 2x.
x^{2}+2x+1-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
2x+1=0
Pahekotia te x^{2} me -x^{2}, ka 0.
2x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2} y=\frac{1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}