\left\{ \begin{array} { l } { ( x - 2 ) ^ { 2 } - 2 ( x - 2 y ) = 1 - ( 3 - x ) ( 3 + x ) } \\ { 2 x + y = 4 } \end{array} \right.
Whakaoti mō x, y
x=2
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4x+4-2\left(x-2y\right)=1-\left(3-x\right)\left(3+x\right)
Whakaarohia te whārite tuatahi. Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-2x+4y=1-\left(3-x\right)\left(3+x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-2y.
x^{2}-6x+4+4y=1-\left(3-x\right)\left(3+x\right)
Pahekotia te -4x me -2x, ka -6x.
x^{2}-6x+4+4y=1-\left(9-x^{2}\right)
Whakaarohia te \left(3-x\right)\left(3+x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-6x+4+4y=1-9+x^{2}
Hei kimi i te tauaro o 9-x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-6x+4+4y=-8+x^{2}
Tangohia te 9 i te 1, ka -8.
x^{2}-6x+4+4y-x^{2}=-8
Tangohia te x^{2} mai i ngā taha e rua.
-6x+4+4y=-8
Pahekotia te x^{2} me -x^{2}, ka 0.
-6x+4y=-8-4
Tangohia te 4 mai i ngā taha e rua.
-6x+4y=-12
Tangohia te 4 i te -8, ka -12.
-6x+4y=-12,2x+y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-6x+4y=-12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-6x=-4y-12
Me tango 4y mai i ngā taha e rua o te whārite.
x=-\frac{1}{6}\left(-4y-12\right)
Whakawehea ngā taha e rua ki te -6.
x=\frac{2}{3}y+2
Whakareatia -\frac{1}{6} ki te -4y-12.
2\left(\frac{2}{3}y+2\right)+y=4
Whakakapia te \frac{2y}{3}+2 mō te x ki tērā atu whārite, 2x+y=4.
\frac{4}{3}y+4+y=4
Whakareatia 2 ki te \frac{2y}{3}+2.
\frac{7}{3}y+4=4
Tāpiri \frac{4y}{3} ki te y.
\frac{7}{3}y=0
Me tango 4 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=2
Whakaurua te 0 mō y ki x=\frac{2}{3}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2,y=0
Kua oti te pūnaha te whakatau.
x^{2}-4x+4-2\left(x-2y\right)=1-\left(3-x\right)\left(3+x\right)
Whakaarohia te whārite tuatahi. Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-2x+4y=1-\left(3-x\right)\left(3+x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-2y.
x^{2}-6x+4+4y=1-\left(3-x\right)\left(3+x\right)
Pahekotia te -4x me -2x, ka -6x.
x^{2}-6x+4+4y=1-\left(9-x^{2}\right)
Whakaarohia te \left(3-x\right)\left(3+x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-6x+4+4y=1-9+x^{2}
Hei kimi i te tauaro o 9-x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-6x+4+4y=-8+x^{2}
Tangohia te 9 i te 1, ka -8.
x^{2}-6x+4+4y-x^{2}=-8
Tangohia te x^{2} mai i ngā taha e rua.
-6x+4+4y=-8
Pahekotia te x^{2} me -x^{2}, ka 0.
-6x+4y=-8-4
Tangohia te 4 mai i ngā taha e rua.
-6x+4y=-12
Tangohia te 4 i te -8, ka -12.
-6x+4y=-12,2x+y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-6&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-6&4\\2&1\end{matrix}\right))\left(\begin{matrix}-6&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&4\\2&1\end{matrix}\right))\left(\begin{matrix}-12\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-6&4\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&4\\2&1\end{matrix}\right))\left(\begin{matrix}-12\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&4\\2&1\end{matrix}\right))\left(\begin{matrix}-12\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-6-4\times 2}&-\frac{4}{-6-4\times 2}\\-\frac{2}{-6-4\times 2}&-\frac{6}{-6-4\times 2}\end{matrix}\right)\left(\begin{matrix}-12\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{2}{7}\\\frac{1}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-12\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\left(-12\right)+\frac{2}{7}\times 4\\\frac{1}{7}\left(-12\right)+\frac{3}{7}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=0
Tangohia ngā huānga poukapa x me y.
x^{2}-4x+4-2\left(x-2y\right)=1-\left(3-x\right)\left(3+x\right)
Whakaarohia te whārite tuatahi. Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-2x+4y=1-\left(3-x\right)\left(3+x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-2y.
x^{2}-6x+4+4y=1-\left(3-x\right)\left(3+x\right)
Pahekotia te -4x me -2x, ka -6x.
x^{2}-6x+4+4y=1-\left(9-x^{2}\right)
Whakaarohia te \left(3-x\right)\left(3+x\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-6x+4+4y=1-9+x^{2}
Hei kimi i te tauaro o 9-x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-6x+4+4y=-8+x^{2}
Tangohia te 9 i te 1, ka -8.
x^{2}-6x+4+4y-x^{2}=-8
Tangohia te x^{2} mai i ngā taha e rua.
-6x+4+4y=-8
Pahekotia te x^{2} me -x^{2}, ka 0.
-6x+4y=-8-4
Tangohia te 4 mai i ngā taha e rua.
-6x+4y=-12
Tangohia te 4 i te -8, ka -12.
-6x+4y=-12,2x+y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-6\right)x+2\times 4y=2\left(-12\right),-6\times 2x-6y=-6\times 4
Kia ōrite ai a -6x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -6.
-12x+8y=-24,-12x-6y=-24
Whakarūnātia.
-12x+12x+8y+6y=-24+24
Me tango -12x-6y=-24 mai i -12x+8y=-24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y+6y=-24+24
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
14y=-24+24
Tāpiri 8y ki te 6y.
14y=0
Tāpiri -24 ki te 24.
y=0
Whakawehea ngā taha e rua ki te 14.
2x=4
Whakaurua te 0 mō y ki 2x+y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2
Whakawehea ngā taha e rua ki te 2.
x=2,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}