\left\{ \begin{array} { l } { ( x + 2 ) ^ { 2 } + 1 = x ^ { 2 } + 5 y } \\ { 3 x + y = 1 } \end{array} \right.
Whakaoti mō x, y
x=0
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+4x+4+1=x^{2}+5y
Whakaarohia te whārite tuatahi. Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+5=x^{2}+5y
Tāpirihia te 4 ki te 1, ka 5.
x^{2}+4x+5-x^{2}=5y
Tangohia te x^{2} mai i ngā taha e rua.
4x+5=5y
Pahekotia te x^{2} me -x^{2}, ka 0.
4x+5-5y=0
Tangohia te 5y mai i ngā taha e rua.
4x-5y=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-5y=-5,3x+y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-5y=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=5y-5
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(5y-5\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{5}{4}y-\frac{5}{4}
Whakareatia \frac{1}{4} ki te -5+5y.
3\left(\frac{5}{4}y-\frac{5}{4}\right)+y=1
Whakakapia te \frac{-5+5y}{4} mō te x ki tērā atu whārite, 3x+y=1.
\frac{15}{4}y-\frac{15}{4}+y=1
Whakareatia 3 ki te \frac{-5+5y}{4}.
\frac{19}{4}y-\frac{15}{4}=1
Tāpiri \frac{15y}{4} ki te y.
\frac{19}{4}y=\frac{19}{4}
Me tāpiri \frac{15}{4} ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5-5}{4}
Whakaurua te 1 mō y ki x=\frac{5}{4}y-\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Tāpiri -\frac{5}{4} ki te \frac{5}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=1
Kua oti te pūnaha te whakatau.
x^{2}+4x+4+1=x^{2}+5y
Whakaarohia te whārite tuatahi. Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+5=x^{2}+5y
Tāpirihia te 4 ki te 1, ka 5.
x^{2}+4x+5-x^{2}=5y
Tangohia te x^{2} mai i ngā taha e rua.
4x+5=5y
Pahekotia te x^{2} me -x^{2}, ka 0.
4x+5-5y=0
Tangohia te 5y mai i ngā taha e rua.
4x-5y=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-5y=-5,3x+y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-5\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-5\\3&1\end{matrix}\right))\left(\begin{matrix}4&-5\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&1\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-5\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&1\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&1\end{matrix}\right))\left(\begin{matrix}-5\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\times 3\right)}&-\frac{-5}{4-\left(-5\times 3\right)}\\-\frac{3}{4-\left(-5\times 3\right)}&\frac{4}{4-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&\frac{5}{19}\\-\frac{3}{19}&\frac{4}{19}\end{matrix}\right)\left(\begin{matrix}-5\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}\left(-5\right)+\frac{5}{19}\\-\frac{3}{19}\left(-5\right)+\frac{4}{19}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=1
Tangohia ngā huānga poukapa x me y.
x^{2}+4x+4+1=x^{2}+5y
Whakaarohia te whārite tuatahi. Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
x^{2}+4x+5=x^{2}+5y
Tāpirihia te 4 ki te 1, ka 5.
x^{2}+4x+5-x^{2}=5y
Tangohia te x^{2} mai i ngā taha e rua.
4x+5=5y
Pahekotia te x^{2} me -x^{2}, ka 0.
4x+5-5y=0
Tangohia te 5y mai i ngā taha e rua.
4x-5y=-5
Tangohia te 5 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-5y=-5,3x+y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\left(-5\right)y=3\left(-5\right),4\times 3x+4y=4
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x-15y=-15,12x+4y=4
Whakarūnātia.
12x-12x-15y-4y=-15-4
Me tango 12x+4y=4 mai i 12x-15y=-15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y-4y=-15-4
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=-15-4
Tāpiri -15y ki te -4y.
-19y=-19
Tāpiri -15 ki te -4.
y=1
Whakawehea ngā taha e rua ki te -19.
3x+1=1
Whakaurua te 1 mō y ki 3x+y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=0
Me tango 1 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 3.
x=0,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}