\left\{ \begin{array} { l } { ( a - d ) + a + ( a + d ) = 120 } \\ { 4 ( a - d ) + 5 = a + d } \end{array} \right.
Whakaoti mō a, d
a=40
d=25
Tohaina
Kua tāruatia ki te papatopenga
2a-d+a+d=120
Whakaarohia te whārite tuatahi. Pahekotia te a me a, ka 2a.
3a-d+d=120
Pahekotia te 2a me a, ka 3a.
3a=120
Pahekotia te -d me d, ka 0.
a=\frac{120}{3}
Whakawehea ngā taha e rua ki te 3.
a=40
Whakawehea te 120 ki te 3, kia riro ko 40.
4\left(40-d\right)+5=40+d
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
160-4d+5=40+d
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 40-d.
165-4d=40+d
Tāpirihia te 160 ki te 5, ka 165.
165-4d-d=40
Tangohia te d mai i ngā taha e rua.
165-5d=40
Pahekotia te -4d me -d, ka -5d.
-5d=40-165
Tangohia te 165 mai i ngā taha e rua.
-5d=-125
Tangohia te 165 i te 40, ka -125.
d=\frac{-125}{-5}
Whakawehea ngā taha e rua ki te -5.
d=25
Whakawehea te -125 ki te -5, kia riro ko 25.
a=40 d=25
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}