Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a-2\left(b-2013\right)+2012=3,3\left(a+2012\right)+4\left(b-2013\right)=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a-2\left(b-2013\right)+2012=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a-2b+4026+2012=3
Whakareatia -2 ki te b-2013.
a-2b+6038=3
Tāpiri 4026 ki te 2012.
a-2b=-6035
Me tango 6038 mai i ngā taha e rua o te whārite.
a=2b-6035
Me tāpiri 2b ki ngā taha e rua o te whārite.
3\left(2b-6035+2012\right)+4\left(b-2013\right)=5
Whakakapia te 2b-6035 mō te a ki tērā atu whārite, 3\left(a+2012\right)+4\left(b-2013\right)=5.
3\left(2b-4023\right)+4\left(b-2013\right)=5
Tāpiri -6035 ki te 2012.
6b-12069+4\left(b-2013\right)=5
Whakareatia 3 ki te 2b-4023.
6b-12069+4b-8052=5
Whakareatia 4 ki te b-2013.
10b-12069-8052=5
Tāpiri 6b ki te 4b.
10b-20121=5
Tāpiri -12069 ki te -8052.
10b=20126
Me tāpiri 20121 ki ngā taha e rua o te whārite.
b=\frac{10063}{5}
Whakawehea ngā taha e rua ki te 10.
a=2\times \frac{10063}{5}-6035
Whakaurua te \frac{10063}{5} mō b ki a=2b-6035. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{20126}{5}-6035
Whakareatia 2 ki te \frac{10063}{5}.
a=-\frac{10049}{5}
Tāpiri -6035 ki te \frac{20126}{5}.
a=-\frac{10049}{5},b=\frac{10063}{5}
Kua oti te pūnaha te whakatau.
a-2\left(b-2013\right)+2012=3,3\left(a+2012\right)+4\left(b-2013\right)=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
a-2\left(b-2013\right)+2012=3
Whakarūnātia te whārite tuatahi ki te āhua tānga ngahuru.
a-2b+4026+2012=3
Whakareatia -2 ki te b-2013.
a-2b+6038=3
Tāpiri 4026 ki te 2012.
a-2b=-6035
Me tango 6038 mai i ngā taha e rua o te whārite.
3\left(a+2012\right)+4\left(b-2013\right)=5
Whakarūnātia te whārite tuarua ki te āhua tānga ngahuru.
3a+6036+4\left(b-2013\right)=5
Whakareatia 3 ki te a+2012.
3a+6036+4b-8052=5
Whakareatia 4 ki te b-2013.
3a+4b-2016=5
Tāpiri 6036 ki te -8052.
3a+4b=2021
Me tāpiri 2016 ki ngā taha e rua o te whārite.
\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}1&-2\\3&4\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&4\end{matrix}\right))\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\times 3\right)}&-\frac{-2}{4-\left(-2\times 3\right)}\\-\frac{3}{4-\left(-2\times 3\right)}&\frac{1}{4-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\-\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-6035\\2021\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-6035\right)+\frac{1}{5}\times 2021\\-\frac{3}{10}\left(-6035\right)+\frac{1}{10}\times 2021\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{10049}{5}\\\frac{10063}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
a=-\frac{10049}{5},b=\frac{10063}{5}
Tangohia ngā huānga poukapa a me b.