\left\{ \begin{array} { l } { ( 4 + B ) \frac { 1 } { 2 } - B = \frac { 3 } { 4 } } \\ { ( 2 A + B ) \frac { 1 } { 4 } - B = \frac { 5 } { 4 } } \end{array} \right.
Whakaoti mō B, A
B = \frac{5}{2} = 2\frac{1}{2} = 2.5
A = \frac{25}{4} = 6\frac{1}{4} = 6.25
Tohaina
Kua tāruatia ki te papatopenga
2+\frac{1}{2}B-B=\frac{3}{4}
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 4+B ki te \frac{1}{2}.
2-\frac{1}{2}B=\frac{3}{4}
Pahekotia te \frac{1}{2}B me -B, ka -\frac{1}{2}B.
-\frac{1}{2}B=\frac{3}{4}-2
Tangohia te 2 mai i ngā taha e rua.
-\frac{1}{2}B=-\frac{5}{4}
Tangohia te 2 i te \frac{3}{4}, ka -\frac{5}{4}.
B=-\frac{5}{4}\left(-2\right)
Me whakarea ngā taha e rua ki te -2, te tau utu o -\frac{1}{2}.
B=\frac{5}{2}
Whakareatia te -\frac{5}{4} ki te -2, ka \frac{5}{2}.
\left(2A+\frac{5}{2}\right)\times \frac{1}{4}-\frac{5}{2}=\frac{5}{4}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{1}{2}A+\frac{5}{8}-\frac{5}{2}=\frac{5}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te 2A+\frac{5}{2} ki te \frac{1}{4}.
\frac{1}{2}A-\frac{15}{8}=\frac{5}{4}
Tangohia te \frac{5}{2} i te \frac{5}{8}, ka -\frac{15}{8}.
\frac{1}{2}A=\frac{5}{4}+\frac{15}{8}
Me tāpiri te \frac{15}{8} ki ngā taha e rua.
\frac{1}{2}A=\frac{25}{8}
Tāpirihia te \frac{5}{4} ki te \frac{15}{8}, ka \frac{25}{8}.
A=\frac{25}{8}\times 2
Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
A=\frac{25}{4}
Whakareatia te \frac{25}{8} ki te 2, ka \frac{25}{4}.
B=\frac{5}{2} A=\frac{25}{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}