Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(x-y\right)-5y=10x-10
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2x-2y-5y=10x-10
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
2x-7y=10x-10
Pahekotia te -2y me -5y, ka -7y.
2x-7y-10x=-10
Tangohia te 10x mai i ngā taha e rua.
-8x-7y=-10
Pahekotia te 2x me -10x, ka -8x.
2x+3\left(y+2\right)=6
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x+3y+6=6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+2.
2x+3y=6-6
Tangohia te 6 mai i ngā taha e rua.
2x+3y=0
Tangohia te 6 i te 6, ka 0.
-8x-7y=-10,2x+3y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-8x-7y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-8x=7y-10
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=-\frac{1}{8}\left(7y-10\right)
Whakawehea ngā taha e rua ki te -8.
x=-\frac{7}{8}y+\frac{5}{4}
Whakareatia -\frac{1}{8} ki te 7y-10.
2\left(-\frac{7}{8}y+\frac{5}{4}\right)+3y=0
Whakakapia te -\frac{7y}{8}+\frac{5}{4} mō te x ki tērā atu whārite, 2x+3y=0.
-\frac{7}{4}y+\frac{5}{2}+3y=0
Whakareatia 2 ki te -\frac{7y}{8}+\frac{5}{4}.
\frac{5}{4}y+\frac{5}{2}=0
Tāpiri -\frac{7y}{4} ki te 3y.
\frac{5}{4}y=-\frac{5}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{8}\left(-2\right)+\frac{5}{4}
Whakaurua te -2 mō y ki x=-\frac{7}{8}y+\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{7+5}{4}
Whakareatia -\frac{7}{8} ki te -2.
x=3
Tāpiri \frac{5}{4} ki te \frac{7}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=-2
Kua oti te pūnaha te whakatau.
2\left(x-y\right)-5y=10x-10
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2x-2y-5y=10x-10
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
2x-7y=10x-10
Pahekotia te -2y me -5y, ka -7y.
2x-7y-10x=-10
Tangohia te 10x mai i ngā taha e rua.
-8x-7y=-10
Pahekotia te 2x me -10x, ka -8x.
2x+3\left(y+2\right)=6
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x+3y+6=6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+2.
2x+3y=6-6
Tangohia te 6 mai i ngā taha e rua.
2x+3y=0
Tangohia te 6 i te 6, ka 0.
-8x-7y=-10,2x+3y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-8&-7\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-8\times 3-\left(-7\times 2\right)}&-\frac{-7}{-8\times 3-\left(-7\times 2\right)}\\-\frac{2}{-8\times 3-\left(-7\times 2\right)}&-\frac{8}{-8\times 3-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-10\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{10}&-\frac{7}{10}\\\frac{1}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}-10\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{10}\left(-10\right)\\\frac{1}{5}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-2
Tangohia ngā huānga poukapa x me y.
2\left(x-y\right)-5y=10x-10
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2.
2x-2y-5y=10x-10
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-y.
2x-7y=10x-10
Pahekotia te -2y me -5y, ka -7y.
2x-7y-10x=-10
Tangohia te 10x mai i ngā taha e rua.
-8x-7y=-10
Pahekotia te 2x me -10x, ka -8x.
2x+3\left(y+2\right)=6
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x+3y+6=6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y+2.
2x+3y=6-6
Tangohia te 6 mai i ngā taha e rua.
2x+3y=0
Tangohia te 6 i te 6, ka 0.
-8x-7y=-10,2x+3y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-8\right)x+2\left(-7\right)y=2\left(-10\right),-8\times 2x-8\times 3y=0
Kia ōrite ai a -8x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -8.
-16x-14y=-20,-16x-24y=0
Whakarūnātia.
-16x+16x-14y+24y=-20
Me tango -16x-24y=0 mai i -16x-14y=-20 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-14y+24y=-20
Tāpiri -16x ki te 16x. Ka whakakore atu ngā kupu -16x me 16x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=-20
Tāpiri -14y ki te 24y.
y=-2
Whakawehea ngā taha e rua ki te 10.
2x+3\left(-2\right)=0
Whakaurua te -2 mō y ki 2x+3y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-6=0
Whakareatia 3 ki te -2.
2x=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 2.
x=3,y=-2
Kua oti te pūnaha te whakatau.