Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12},6x-y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
Whakareatia \frac{1}{4} ki te x-1.
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}y+\frac{1}{2}=\frac{5}{12}
Whakareatia \frac{1}{4} ki te y+2.
\frac{1}{4}x+\frac{1}{4}y+\frac{1}{4}=\frac{5}{12}
Tāpiri -\frac{1}{4} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{4}x+\frac{1}{4}y=\frac{1}{6}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
\frac{1}{4}x=-\frac{1}{4}y+\frac{1}{6}
Me tango \frac{y}{4} mai i ngā taha e rua o te whārite.
x=4\left(-\frac{1}{4}y+\frac{1}{6}\right)
Me whakarea ngā taha e rua ki te 4.
x=-y+\frac{2}{3}
Whakareatia 4 ki te -\frac{y}{4}+\frac{1}{6}.
6\left(-y+\frac{2}{3}\right)-y=1
Whakakapia te -y+\frac{2}{3} mō te x ki tērā atu whārite, 6x-y=1.
-6y+4-y=1
Whakareatia 6 ki te -y+\frac{2}{3}.
-7y+4=1
Tāpiri -6y ki te -y.
-7y=-3
Me tango 4 mai i ngā taha e rua o te whārite.
y=\frac{3}{7}
Whakawehea ngā taha e rua ki te -7.
x=-\frac{3}{7}+\frac{2}{3}
Whakaurua te \frac{3}{7} mō y ki x=-y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{21}
Tāpiri \frac{2}{3} ki te -\frac{3}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{5}{21},y=\frac{3}{7}
Kua oti te pūnaha te whakatau.
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12},6x-y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\frac{1}{4}\left(x-1\right)+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
Whakarūnātia te whārite tuatahi ki te āhua tānga ngahuru.
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}\left(y+2\right)=\frac{5}{12}
Whakareatia \frac{1}{4} ki te x-1.
\frac{1}{4}x-\frac{1}{4}+\frac{1}{4}y+\frac{1}{2}=\frac{5}{12}
Whakareatia \frac{1}{4} ki te y+2.
\frac{1}{4}x+\frac{1}{4}y+\frac{1}{4}=\frac{5}{12}
Tāpiri -\frac{1}{4} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{4}x+\frac{1}{4}y=\frac{1}{6}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\6&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}&-\frac{\frac{1}{4}}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}\\-\frac{6}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}&\frac{\frac{1}{4}}{\frac{1}{4}\left(-1\right)-\frac{1}{4}\times 6}\end{matrix}\right)\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&\frac{1}{7}\\\frac{24}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}\frac{1}{6}\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\times \frac{1}{6}+\frac{1}{7}\\\frac{24}{7}\times \frac{1}{6}-\frac{1}{7}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\\\frac{3}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{21},y=\frac{3}{7}
Tangohia ngā huānga poukapa x me y.