\left\{ \begin{array} { l } { \frac { x } { 60 } + \frac { y } { 30 } = 6 \cdot 5 } \\ { \frac { x } { 50 } + \frac { y } { 40 } = 6 } \end{array} \right.
Whakaoti mō x, y
x=-2200
y=2000
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{60}x+\frac{1}{30}y=30,\frac{1}{50}x+\frac{1}{40}y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{60}x+\frac{1}{30}y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{60}x=-\frac{1}{30}y+30
Me tango \frac{y}{30} mai i ngā taha e rua o te whārite.
x=60\left(-\frac{1}{30}y+30\right)
Me whakarea ngā taha e rua ki te 60.
x=-2y+1800
Whakareatia 60 ki te -\frac{y}{30}+30.
\frac{1}{50}\left(-2y+1800\right)+\frac{1}{40}y=6
Whakakapia te -2y+1800 mō te x ki tērā atu whārite, \frac{1}{50}x+\frac{1}{40}y=6.
-\frac{1}{25}y+36+\frac{1}{40}y=6
Whakareatia \frac{1}{50} ki te -2y+1800.
-\frac{3}{200}y+36=6
Tāpiri -\frac{y}{25} ki te \frac{y}{40}.
-\frac{3}{200}y=-30
Me tango 36 mai i ngā taha e rua o te whārite.
y=2000
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{200}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-2\times 2000+1800
Whakaurua te 2000 mō y ki x=-2y+1800. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4000+1800
Whakareatia -2 ki te 2000.
x=-2200
Tāpiri 1800 ki te -4000.
x=-2200,y=2000
Kua oti te pūnaha te whakatau.
\frac{1}{60}x+\frac{1}{30}y=30,\frac{1}{50}x+\frac{1}{40}y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right))\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{60}&\frac{1}{30}\\\frac{1}{50}&\frac{1}{40}\end{matrix}\right))\left(\begin{matrix}30\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{40}}{\frac{1}{60}\times \frac{1}{40}-\frac{1}{30}\times \frac{1}{50}}&-\frac{\frac{1}{30}}{\frac{1}{60}\times \frac{1}{40}-\frac{1}{30}\times \frac{1}{50}}\\-\frac{\frac{1}{50}}{\frac{1}{60}\times \frac{1}{40}-\frac{1}{30}\times \frac{1}{50}}&\frac{\frac{1}{60}}{\frac{1}{60}\times \frac{1}{40}-\frac{1}{30}\times \frac{1}{50}}\end{matrix}\right)\left(\begin{matrix}30\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-100&\frac{400}{3}\\80&-\frac{200}{3}\end{matrix}\right)\left(\begin{matrix}30\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-100\times 30+\frac{400}{3}\times 6\\80\times 30-\frac{200}{3}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2200\\2000\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2200,y=2000
Tangohia ngā huānga poukapa x me y.
\frac{1}{60}x+\frac{1}{30}y=30,\frac{1}{50}x+\frac{1}{40}y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{50}\times \frac{1}{60}x+\frac{1}{50}\times \frac{1}{30}y=\frac{1}{50}\times 30,\frac{1}{60}\times \frac{1}{50}x+\frac{1}{60}\times \frac{1}{40}y=\frac{1}{60}\times 6
Kia ōrite ai a \frac{x}{60} me \frac{x}{50}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{50} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{60}.
\frac{1}{3000}x+\frac{1}{1500}y=\frac{3}{5},\frac{1}{3000}x+\frac{1}{2400}y=\frac{1}{10}
Whakarūnātia.
\frac{1}{3000}x-\frac{1}{3000}x+\frac{1}{1500}y-\frac{1}{2400}y=\frac{3}{5}-\frac{1}{10}
Me tango \frac{1}{3000}x+\frac{1}{2400}y=\frac{1}{10} mai i \frac{1}{3000}x+\frac{1}{1500}y=\frac{3}{5} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{1500}y-\frac{1}{2400}y=\frac{3}{5}-\frac{1}{10}
Tāpiri \frac{x}{3000} ki te -\frac{x}{3000}. Ka whakakore atu ngā kupu \frac{x}{3000} me -\frac{x}{3000}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{1}{4000}y=\frac{3}{5}-\frac{1}{10}
Tāpiri \frac{y}{1500} ki te -\frac{y}{2400}.
\frac{1}{4000}y=\frac{1}{2}
Tāpiri \frac{3}{5} ki te -\frac{1}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=2000
Me whakarea ngā taha e rua ki te 4000.
\frac{1}{50}x+\frac{1}{40}\times 2000=6
Whakaurua te 2000 mō y ki \frac{1}{50}x+\frac{1}{40}y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{50}x+50=6
Whakareatia \frac{1}{40} ki te 2000.
\frac{1}{50}x=-44
Me tango 50 mai i ngā taha e rua o te whārite.
x=-2200
Me whakarea ngā taha e rua ki te 50.
x=-2200,y=2000
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}