Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{6}x-y=-1,3x-2y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{6}x-y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{6}x=y-1
Me tāpiri y ki ngā taha e rua o te whārite.
x=6\left(y-1\right)
Me whakarea ngā taha e rua ki te 6.
x=6y-6
Whakareatia 6 ki te y-1.
3\left(6y-6\right)-2y=6
Whakakapia te -6+6y mō te x ki tērā atu whārite, 3x-2y=6.
18y-18-2y=6
Whakareatia 3 ki te -6+6y.
16y-18=6
Tāpiri 18y ki te -2y.
16y=24
Me tāpiri 18 ki ngā taha e rua o te whārite.
y=\frac{3}{2}
Whakawehea ngā taha e rua ki te 16.
x=6\times \frac{3}{2}-6
Whakaurua te \frac{3}{2} mō y ki x=6y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=9-6
Whakareatia 6 ki te \frac{3}{2}.
x=3
Tāpiri -6 ki te 9.
x=3,y=\frac{3}{2}
Kua oti te pūnaha te whakatau.
\frac{1}{6}x-y=-1,3x-2y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{6}&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{\frac{1}{6}\left(-2\right)-\left(-3\right)}&-\frac{-1}{\frac{1}{6}\left(-2\right)-\left(-3\right)}\\-\frac{3}{\frac{1}{6}\left(-2\right)-\left(-3\right)}&\frac{\frac{1}{6}}{\frac{1}{6}\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-1\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}&\frac{3}{8}\\-\frac{9}{8}&\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}-1\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\left(-1\right)+\frac{3}{8}\times 6\\-\frac{9}{8}\left(-1\right)+\frac{1}{16}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=\frac{3}{2}
Tangohia ngā huānga poukapa x me y.
\frac{1}{6}x-y=-1,3x-2y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times \frac{1}{6}x+3\left(-1\right)y=3\left(-1\right),\frac{1}{6}\times 3x+\frac{1}{6}\left(-2\right)y=\frac{1}{6}\times 6
Kia ōrite ai a \frac{x}{6} me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{6}.
\frac{1}{2}x-3y=-3,\frac{1}{2}x-\frac{1}{3}y=1
Whakarūnātia.
\frac{1}{2}x-\frac{1}{2}x-3y+\frac{1}{3}y=-3-1
Me tango \frac{1}{2}x-\frac{1}{3}y=1 mai i \frac{1}{2}x-3y=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+\frac{1}{3}y=-3-1
Tāpiri \frac{x}{2} ki te -\frac{x}{2}. Ka whakakore atu ngā kupu \frac{x}{2} me -\frac{x}{2}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{8}{3}y=-3-1
Tāpiri -3y ki te \frac{y}{3}.
-\frac{8}{3}y=-4
Tāpiri -3 ki te -1.
y=\frac{3}{2}
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
3x-2\times \frac{3}{2}=6
Whakaurua te \frac{3}{2} mō y ki 3x-2y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-3=6
Whakareatia -2 ki te \frac{3}{2}.
3x=9
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 3.
x=3,y=\frac{3}{2}
Kua oti te pūnaha te whakatau.