Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-6y=-120
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 6,5.
3x-2y=-24
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6.
5x-6y=-120,3x-2y=-24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-6y=-120
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=6y-120
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(6y-120\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{6}{5}y-24
Whakareatia \frac{1}{5} ki te -120+6y.
3\left(\frac{6}{5}y-24\right)-2y=-24
Whakakapia te \frac{6y}{5}-24 mō te x ki tērā atu whārite, 3x-2y=-24.
\frac{18}{5}y-72-2y=-24
Whakareatia 3 ki te \frac{6y}{5}-24.
\frac{8}{5}y-72=-24
Tāpiri \frac{18y}{5} ki te -2y.
\frac{8}{5}y=48
Me tāpiri 72 ki ngā taha e rua o te whārite.
y=30
Whakawehea ngā taha e rua o te whārite ki te \frac{8}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{6}{5}\times 30-24
Whakaurua te 30 mō y ki x=\frac{6}{5}y-24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=36-24
Whakareatia \frac{6}{5} ki te 30.
x=12
Tāpiri -24 ki te 36.
x=12,y=30
Kua oti te pūnaha te whakatau.
5x-6y=-120
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 6,5.
3x-2y=-24
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6.
5x-6y=-120,3x-2y=-24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-120\\-24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-6\\3&-2\end{matrix}\right))\left(\begin{matrix}5&-6\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\3&-2\end{matrix}\right))\left(\begin{matrix}-120\\-24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-6\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\3&-2\end{matrix}\right))\left(\begin{matrix}-120\\-24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-6\\3&-2\end{matrix}\right))\left(\begin{matrix}-120\\-24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5\left(-2\right)-\left(-6\times 3\right)}&-\frac{-6}{5\left(-2\right)-\left(-6\times 3\right)}\\-\frac{3}{5\left(-2\right)-\left(-6\times 3\right)}&\frac{5}{5\left(-2\right)-\left(-6\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-120\\-24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{3}{4}\\-\frac{3}{8}&\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}-120\\-24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-120\right)+\frac{3}{4}\left(-24\right)\\-\frac{3}{8}\left(-120\right)+\frac{5}{8}\left(-24\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\30\end{matrix}\right)
Mahia ngā tātaitanga.
x=12,y=30
Tangohia ngā huānga poukapa x me y.
5x-6y=-120
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 6,5.
3x-2y=-24
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6.
5x-6y=-120,3x-2y=-24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3\left(-6\right)y=3\left(-120\right),5\times 3x+5\left(-2\right)y=5\left(-24\right)
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x-18y=-360,15x-10y=-120
Whakarūnātia.
15x-15x-18y+10y=-360+120
Me tango 15x-10y=-120 mai i 15x-18y=-360 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-18y+10y=-360+120
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8y=-360+120
Tāpiri -18y ki te 10y.
-8y=-240
Tāpiri -360 ki te 120.
y=30
Whakawehea ngā taha e rua ki te -8.
3x-2\times 30=-24
Whakaurua te 30 mō y ki 3x-2y=-24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-60=-24
Whakareatia -2 ki te 30.
3x=36
Me tāpiri 60 ki ngā taha e rua o te whārite.
x=12
Whakawehea ngā taha e rua ki te 3.
x=12,y=30
Kua oti te pūnaha te whakatau.