\left\{ \begin{array} { l } { \frac { x } { 4 } + \frac { y } { 3 } = 7 } \\ { \frac { 2 } { 3 } x + \frac { y } { 2 } = 14 } \end{array} \right.
Whakaoti mō x, y
x=12
y=12
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{4}x+\frac{1}{3}y=7,\frac{2}{3}x+\frac{1}{2}y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{4}x+\frac{1}{3}y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{4}x=-\frac{1}{3}y+7
Me tango \frac{y}{3} mai i ngā taha e rua o te whārite.
x=4\left(-\frac{1}{3}y+7\right)
Me whakarea ngā taha e rua ki te 4.
x=-\frac{4}{3}y+28
Whakareatia 4 ki te -\frac{y}{3}+7.
\frac{2}{3}\left(-\frac{4}{3}y+28\right)+\frac{1}{2}y=14
Whakakapia te -\frac{4y}{3}+28 mō te x ki tērā atu whārite, \frac{2}{3}x+\frac{1}{2}y=14.
-\frac{8}{9}y+\frac{56}{3}+\frac{1}{2}y=14
Whakareatia \frac{2}{3} ki te -\frac{4y}{3}+28.
-\frac{7}{18}y+\frac{56}{3}=14
Tāpiri -\frac{8y}{9} ki te \frac{y}{2}.
-\frac{7}{18}y=-\frac{14}{3}
Me tango \frac{56}{3} mai i ngā taha e rua o te whārite.
y=12
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{18}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{4}{3}\times 12+28
Whakaurua te 12 mō y ki x=-\frac{4}{3}y+28. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-16+28
Whakareatia -\frac{4}{3} ki te 12.
x=12
Tāpiri 28 ki te -16.
x=12,y=12
Kua oti te pūnaha te whakatau.
\frac{1}{4}x+\frac{1}{3}y=7,\frac{2}{3}x+\frac{1}{2}y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}7\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}7\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{2}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}7\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{4}\times \frac{1}{2}-\frac{1}{3}\times \frac{2}{3}}&-\frac{\frac{1}{3}}{\frac{1}{4}\times \frac{1}{2}-\frac{1}{3}\times \frac{2}{3}}\\-\frac{\frac{2}{3}}{\frac{1}{4}\times \frac{1}{2}-\frac{1}{3}\times \frac{2}{3}}&\frac{\frac{1}{4}}{\frac{1}{4}\times \frac{1}{2}-\frac{1}{3}\times \frac{2}{3}}\end{matrix}\right)\left(\begin{matrix}7\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{36}{7}&\frac{24}{7}\\\frac{48}{7}&-\frac{18}{7}\end{matrix}\right)\left(\begin{matrix}7\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{36}{7}\times 7+\frac{24}{7}\times 14\\\frac{48}{7}\times 7-\frac{18}{7}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
Mahia ngā tātaitanga.
x=12,y=12
Tangohia ngā huānga poukapa x me y.
\frac{1}{4}x+\frac{1}{3}y=7,\frac{2}{3}x+\frac{1}{2}y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{2}{3}\times \frac{1}{4}x+\frac{2}{3}\times \frac{1}{3}y=\frac{2}{3}\times 7,\frac{1}{4}\times \frac{2}{3}x+\frac{1}{4}\times \frac{1}{2}y=\frac{1}{4}\times 14
Kia ōrite ai a \frac{x}{4} me \frac{2x}{3}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{2}{3} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{4}.
\frac{1}{6}x+\frac{2}{9}y=\frac{14}{3},\frac{1}{6}x+\frac{1}{8}y=\frac{7}{2}
Whakarūnātia.
\frac{1}{6}x-\frac{1}{6}x+\frac{2}{9}y-\frac{1}{8}y=\frac{14}{3}-\frac{7}{2}
Me tango \frac{1}{6}x+\frac{1}{8}y=\frac{7}{2} mai i \frac{1}{6}x+\frac{2}{9}y=\frac{14}{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{2}{9}y-\frac{1}{8}y=\frac{14}{3}-\frac{7}{2}
Tāpiri \frac{x}{6} ki te -\frac{x}{6}. Ka whakakore atu ngā kupu \frac{x}{6} me -\frac{x}{6}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{7}{72}y=\frac{14}{3}-\frac{7}{2}
Tāpiri \frac{2y}{9} ki te -\frac{y}{8}.
\frac{7}{72}y=\frac{7}{6}
Tāpiri \frac{14}{3} ki te -\frac{7}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=12
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{72}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
\frac{2}{3}x+\frac{1}{2}\times 12=14
Whakaurua te 12 mō y ki \frac{2}{3}x+\frac{1}{2}y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{2}{3}x+6=14
Whakareatia \frac{1}{2} ki te 12.
\frac{2}{3}x=8
Me tango 6 mai i ngā taha e rua o te whārite.
x=12
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=12,y=12
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}