\left\{ \begin{array} { l } { \frac { x } { 4 } + \frac { y } { 2 } = 7 } \\ { \frac { x } { 3 } - \frac { y } { 4 } = 2 } \end{array} \right.
Whakaoti mō x, y
x=12
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+2y=28
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
4x-3y=24
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
x+2y=28,4x-3y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=28
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+28
Me tango 2y mai i ngā taha e rua o te whārite.
4\left(-2y+28\right)-3y=24
Whakakapia te -2y+28 mō te x ki tērā atu whārite, 4x-3y=24.
-8y+112-3y=24
Whakareatia 4 ki te -2y+28.
-11y+112=24
Tāpiri -8y ki te -3y.
-11y=-88
Me tango 112 mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua ki te -11.
x=-2\times 8+28
Whakaurua te 8 mō y ki x=-2y+28. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-16+28
Whakareatia -2 ki te 8.
x=12
Tāpiri 28 ki te -16.
x=12,y=8
Kua oti te pūnaha te whakatau.
x+2y=28
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
4x-3y=24
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
x+2y=28,4x-3y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2\times 4}&-\frac{2}{-3-2\times 4}\\-\frac{4}{-3-2\times 4}&\frac{1}{-3-2\times 4}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{2}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 28+\frac{2}{11}\times 24\\\frac{4}{11}\times 28-\frac{1}{11}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=12,y=8
Tangohia ngā huānga poukapa x me y.
x+2y=28
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
4x-3y=24
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4.
x+2y=28,4x-3y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+4\times 2y=4\times 28,4x-3y=24
Kia ōrite ai a x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4x+8y=112,4x-3y=24
Whakarūnātia.
4x-4x+8y+3y=112-24
Me tango 4x-3y=24 mai i 4x+8y=112 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y+3y=112-24
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=112-24
Tāpiri 8y ki te 3y.
11y=88
Tāpiri 112 ki te -24.
y=8
Whakawehea ngā taha e rua ki te 11.
4x-3\times 8=24
Whakaurua te 8 mō y ki 4x-3y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-24=24
Whakareatia -3 ki te 8.
4x=48
Me tāpiri 24 ki ngā taha e rua o te whārite.
x=12
Whakawehea ngā taha e rua ki te 4.
x=12,y=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}