\left\{ \begin{array} { l } { \frac { x } { 3 } - \frac { y } { 2 } = 6 } \\ { x - \frac { y } { 2 } = 9 } \end{array} \right.
Whakaoti mō x, y
x = \frac{9}{2} = 4\frac{1}{2} = 4.5
y=-9
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-3y=36
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x-y=18
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x-3y=36,2x-y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=36
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+36
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+36\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+18
Whakareatia \frac{1}{2} ki te 36+3y.
2\left(\frac{3}{2}y+18\right)-y=18
Whakakapia te 18+\frac{3y}{2} mō te x ki tērā atu whārite, 2x-y=18.
3y+36-y=18
Whakareatia 2 ki te 18+\frac{3y}{2}.
2y+36=18
Tāpiri 3y ki te -y.
2y=-18
Me tango 36 mai i ngā taha e rua o te whārite.
y=-9
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}\left(-9\right)+18
Whakaurua te -9 mō y ki x=\frac{3}{2}y+18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{27}{2}+18
Whakareatia \frac{3}{2} ki te -9.
x=\frac{9}{2}
Tāpiri 18 ki te -\frac{27}{2}.
x=\frac{9}{2},y=-9
Kua oti te pūnaha te whakatau.
2x-3y=36
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x-y=18
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x-3y=36,2x-y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}36\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}36\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}36\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}36\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 2\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 2\right)}\\-\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}36\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{3}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}36\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 36+\frac{3}{4}\times 18\\-\frac{1}{2}\times 36+\frac{1}{2}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2}\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{2},y=-9
Tangohia ngā huānga poukapa x me y.
2x-3y=36
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
2x-y=18
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x-3y=36,2x-y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-2x-3y+y=36-18
Me tango 2x-y=18 mai i 2x-3y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+y=36-18
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=36-18
Tāpiri -3y ki te y.
-2y=18
Tāpiri 36 ki te -18.
y=-9
Whakawehea ngā taha e rua ki te -2.
2x-\left(-9\right)=18
Whakaurua te -9 mō y ki 2x-y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+9=18
Whakareatia -1 ki te -9.
2x=9
Me tango 9 mai i ngā taha e rua o te whārite.
x=\frac{9}{2}
Whakawehea ngā taha e rua ki te 2.
x=\frac{9}{2},y=-9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}