Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x-3y=24
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
12x+y=24
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 12.
2x-3y=24,12x+y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y+24
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y+24\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y+12
Whakareatia \frac{1}{2} ki te 24+3y.
12\left(\frac{3}{2}y+12\right)+y=24
Whakakapia te \frac{3y}{2}+12 mō te x ki tērā atu whārite, 12x+y=24.
18y+144+y=24
Whakareatia 12 ki te \frac{3y}{2}+12.
19y+144=24
Tāpiri 18y ki te y.
19y=-120
Me tango 144 mai i ngā taha e rua o te whārite.
y=-\frac{120}{19}
Whakawehea ngā taha e rua ki te 19.
x=\frac{3}{2}\left(-\frac{120}{19}\right)+12
Whakaurua te -\frac{120}{19} mō y ki x=\frac{3}{2}y+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{180}{19}+12
Whakareatia \frac{3}{2} ki te -\frac{120}{19} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{48}{19}
Tāpiri 12 ki te -\frac{180}{19}.
x=\frac{48}{19},y=-\frac{120}{19}
Kua oti te pūnaha te whakatau.
2x-3y=24
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
12x+y=24
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 12.
2x-3y=24,12x+y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\12&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\12&1\end{matrix}\right))\left(\begin{matrix}2&-3\\12&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\12&1\end{matrix}\right))\left(\begin{matrix}24\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\12&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\12&1\end{matrix}\right))\left(\begin{matrix}24\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\12&1\end{matrix}\right))\left(\begin{matrix}24\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\times 12\right)}&-\frac{-3}{2-\left(-3\times 12\right)}\\-\frac{12}{2-\left(-3\times 12\right)}&\frac{2}{2-\left(-3\times 12\right)}\end{matrix}\right)\left(\begin{matrix}24\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{38}&\frac{3}{38}\\-\frac{6}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}24\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{38}\times 24+\frac{3}{38}\times 24\\-\frac{6}{19}\times 24+\frac{1}{19}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{48}{19}\\-\frac{120}{19}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{48}{19},y=-\frac{120}{19}
Tangohia ngā huānga poukapa x me y.
2x-3y=24
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2.
12x+y=24
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 12.
2x-3y=24,12x+y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
12\times 2x+12\left(-3\right)y=12\times 24,2\times 12x+2y=2\times 24
Kia ōrite ai a 2x me 12x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 12 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
24x-36y=288,24x+2y=48
Whakarūnātia.
24x-24x-36y-2y=288-48
Me tango 24x+2y=48 mai i 24x-36y=288 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-36y-2y=288-48
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-38y=288-48
Tāpiri -36y ki te -2y.
-38y=240
Tāpiri 288 ki te -48.
y=-\frac{120}{19}
Whakawehea ngā taha e rua ki te -38.
12x-\frac{120}{19}=24
Whakaurua te -\frac{120}{19} mō y ki 12x+y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
12x=\frac{576}{19}
Me tāpiri \frac{120}{19} ki ngā taha e rua o te whārite.
x=\frac{48}{19}
Whakawehea ngā taha e rua ki te 12.
x=\frac{48}{19},y=-\frac{120}{19}
Kua oti te pūnaha te whakatau.