\left\{ \begin{array} { l } { \frac { x } { 3 } + \frac { y } { 4 } = - \frac { 7 } { 12 } } \\ { \frac { x } { 2 } + \frac { y } { 3 } = - \frac { 1 } { 6 } } \end{array} \right.
Whakaoti mō x, y
x=11
y=-17
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}x+\frac{1}{4}y=-\frac{7}{12},\frac{1}{2}x+\frac{1}{3}y=-\frac{1}{6}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{3}x+\frac{1}{4}y=-\frac{7}{12}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{3}x=-\frac{1}{4}y-\frac{7}{12}
Me tango \frac{y}{4} mai i ngā taha e rua o te whārite.
x=3\left(-\frac{1}{4}y-\frac{7}{12}\right)
Me whakarea ngā taha e rua ki te 3.
x=-\frac{3}{4}y-\frac{7}{4}
Whakareatia 3 ki te -\frac{y}{4}-\frac{7}{12}.
\frac{1}{2}\left(-\frac{3}{4}y-\frac{7}{4}\right)+\frac{1}{3}y=-\frac{1}{6}
Whakakapia te \frac{-3y-7}{4} mō te x ki tērā atu whārite, \frac{1}{2}x+\frac{1}{3}y=-\frac{1}{6}.
-\frac{3}{8}y-\frac{7}{8}+\frac{1}{3}y=-\frac{1}{6}
Whakareatia \frac{1}{2} ki te \frac{-3y-7}{4}.
-\frac{1}{24}y-\frac{7}{8}=-\frac{1}{6}
Tāpiri -\frac{3y}{8} ki te \frac{y}{3}.
-\frac{1}{24}y=\frac{17}{24}
Me tāpiri \frac{7}{8} ki ngā taha e rua o te whārite.
y=-17
Me whakarea ngā taha e rua ki te -24.
x=-\frac{3}{4}\left(-17\right)-\frac{7}{4}
Whakaurua te -17 mō y ki x=-\frac{3}{4}y-\frac{7}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{51-7}{4}
Whakareatia -\frac{3}{4} ki te -17.
x=11
Tāpiri -\frac{7}{4} ki te \frac{51}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=11,y=-17
Kua oti te pūnaha te whakatau.
\frac{1}{3}x+\frac{1}{4}y=-\frac{7}{12},\frac{1}{2}x+\frac{1}{3}y=-\frac{1}{6}
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{3}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{12}\\-\frac{1}{6}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}\frac{1}{3}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{7}{12}\\-\frac{1}{6}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{3}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{7}{12}\\-\frac{1}{6}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{3}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{7}{12}\\-\frac{1}{6}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{\frac{1}{3}\times \frac{1}{3}-\frac{1}{4}\times \frac{1}{2}}&-\frac{\frac{1}{4}}{\frac{1}{3}\times \frac{1}{3}-\frac{1}{4}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{3}\times \frac{1}{3}-\frac{1}{4}\times \frac{1}{2}}&\frac{\frac{1}{3}}{\frac{1}{3}\times \frac{1}{3}-\frac{1}{4}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}-\frac{7}{12}\\-\frac{1}{6}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24&18\\36&-24\end{matrix}\right)\left(\begin{matrix}-\frac{7}{12}\\-\frac{1}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\left(-\frac{7}{12}\right)+18\left(-\frac{1}{6}\right)\\36\left(-\frac{7}{12}\right)-24\left(-\frac{1}{6}\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\-17\end{matrix}\right)
Mahia ngā tātaitanga.
x=11,y=-17
Tangohia ngā huānga poukapa x me y.
\frac{1}{3}x+\frac{1}{4}y=-\frac{7}{12},\frac{1}{2}x+\frac{1}{3}y=-\frac{1}{6}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{2}\times \frac{1}{3}x+\frac{1}{2}\times \frac{1}{4}y=\frac{1}{2}\left(-\frac{7}{12}\right),\frac{1}{3}\times \frac{1}{2}x+\frac{1}{3}\times \frac{1}{3}y=\frac{1}{3}\left(-\frac{1}{6}\right)
Kia ōrite ai a \frac{x}{3} me \frac{x}{2}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{2} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{3}.
\frac{1}{6}x+\frac{1}{8}y=-\frac{7}{24},\frac{1}{6}x+\frac{1}{9}y=-\frac{1}{18}
Whakarūnātia.
\frac{1}{6}x-\frac{1}{6}x+\frac{1}{8}y-\frac{1}{9}y=-\frac{7}{24}+\frac{1}{18}
Me tango \frac{1}{6}x+\frac{1}{9}y=-\frac{1}{18} mai i \frac{1}{6}x+\frac{1}{8}y=-\frac{7}{24} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{8}y-\frac{1}{9}y=-\frac{7}{24}+\frac{1}{18}
Tāpiri \frac{x}{6} ki te -\frac{x}{6}. Ka whakakore atu ngā kupu \frac{x}{6} me -\frac{x}{6}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{1}{72}y=-\frac{7}{24}+\frac{1}{18}
Tāpiri \frac{y}{8} ki te -\frac{y}{9}.
\frac{1}{72}y=-\frac{17}{72}
Tāpiri -\frac{7}{24} ki te \frac{1}{18} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-17
Me whakarea ngā taha e rua ki te 72.
\frac{1}{2}x+\frac{1}{3}\left(-17\right)=-\frac{1}{6}
Whakaurua te -17 mō y ki \frac{1}{2}x+\frac{1}{3}y=-\frac{1}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
\frac{1}{2}x-\frac{17}{3}=-\frac{1}{6}
Whakareatia \frac{1}{3} ki te -17.
\frac{1}{2}x=\frac{11}{2}
Me tāpiri \frac{17}{3} ki ngā taha e rua o te whārite.
x=11
Me whakarea ngā taha e rua ki te 2.
x=11,y=-17
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}