\left\{ \begin{array} { l } { \frac { x } { 3 } + \frac { y } { 4 } = \frac { 2 } { 2 } - \frac { 6 } { 6 } } \\ { \frac { 2 x + y } { 5 } - \frac { y - 2 } { 2 } = \frac { x + y - 3 } { 4 } - \frac { y - x - 1 } { 10 } } \end{array} \right.
Whakaoti mō x, y
x = -\frac{33}{13} = -2\frac{7}{13} \approx -2.538461538
y = \frac{44}{13} = 3\frac{5}{13} \approx 3.384615385
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+3y=6\times 2-2\times 6
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,2,6.
4x+3y=12-12
Mahia ngā whakarea.
4x+3y=0
Tangohia te 12 i te 12, ka 0.
4\left(2x+y\right)-10\left(y-2\right)=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2,4,10.
8x+4y-10\left(y-2\right)=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x+y.
8x+4y-10y+20=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te y-2.
8x-6y+20=5\left(x+y-3\right)-2\left(y-x-1\right)
Pahekotia te 4y me -10y, ka -6y.
8x-6y+20=5x+5y-15-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+y-3.
8x-6y+20=5x+5y-15-2y+2x+2
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y-x-1.
8x-6y+20=5x+3y-15+2x+2
Pahekotia te 5y me -2y, ka 3y.
8x-6y+20=7x+3y-15+2
Pahekotia te 5x me 2x, ka 7x.
8x-6y+20=7x+3y-13
Tāpirihia te -15 ki te 2, ka -13.
8x-6y+20-7x=3y-13
Tangohia te 7x mai i ngā taha e rua.
x-6y+20=3y-13
Pahekotia te 8x me -7x, ka x.
x-6y+20-3y=-13
Tangohia te 3y mai i ngā taha e rua.
x-9y+20=-13
Pahekotia te -6y me -3y, ka -9y.
x-9y=-13-20
Tangohia te 20 mai i ngā taha e rua.
x-9y=-33
Tangohia te 20 i te -13, ka -33.
4x+3y=0,x-9y=-33
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3\right)y
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y
Whakareatia \frac{1}{4} ki te -3y.
-\frac{3}{4}y-9y=-33
Whakakapia te -\frac{3y}{4} mō te x ki tērā atu whārite, x-9y=-33.
-\frac{39}{4}y=-33
Tāpiri -\frac{3y}{4} ki te -9y.
y=\frac{44}{13}
Whakawehea ngā taha e rua o te whārite ki te -\frac{39}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\times \frac{44}{13}
Whakaurua te \frac{44}{13} mō y ki x=-\frac{3}{4}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{33}{13}
Whakareatia -\frac{3}{4} ki te \frac{44}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{33}{13},y=\frac{44}{13}
Kua oti te pūnaha te whakatau.
4x+3y=6\times 2-2\times 6
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,2,6.
4x+3y=12-12
Mahia ngā whakarea.
4x+3y=0
Tangohia te 12 i te 12, ka 0.
4\left(2x+y\right)-10\left(y-2\right)=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2,4,10.
8x+4y-10\left(y-2\right)=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x+y.
8x+4y-10y+20=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te y-2.
8x-6y+20=5\left(x+y-3\right)-2\left(y-x-1\right)
Pahekotia te 4y me -10y, ka -6y.
8x-6y+20=5x+5y-15-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+y-3.
8x-6y+20=5x+5y-15-2y+2x+2
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y-x-1.
8x-6y+20=5x+3y-15+2x+2
Pahekotia te 5y me -2y, ka 3y.
8x-6y+20=7x+3y-15+2
Pahekotia te 5x me 2x, ka 7x.
8x-6y+20=7x+3y-13
Tāpirihia te -15 ki te 2, ka -13.
8x-6y+20-7x=3y-13
Tangohia te 7x mai i ngā taha e rua.
x-6y+20=3y-13
Pahekotia te 8x me -7x, ka x.
x-6y+20-3y=-13
Tangohia te 3y mai i ngā taha e rua.
x-9y+20=-13
Pahekotia te -6y me -3y, ka -9y.
x-9y=-13-20
Tangohia te 20 mai i ngā taha e rua.
x-9y=-33
Tangohia te 20 i te -13, ka -33.
4x+3y=0,x-9y=-33
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-33\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\1&-9\end{matrix}\right))\left(\begin{matrix}4&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&-9\end{matrix}\right))\left(\begin{matrix}0\\-33\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\1&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&-9\end{matrix}\right))\left(\begin{matrix}0\\-33\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&-9\end{matrix}\right))\left(\begin{matrix}0\\-33\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{4\left(-9\right)-3}&-\frac{3}{4\left(-9\right)-3}\\-\frac{1}{4\left(-9\right)-3}&\frac{4}{4\left(-9\right)-3}\end{matrix}\right)\left(\begin{matrix}0\\-33\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{1}{13}\\\frac{1}{39}&-\frac{4}{39}\end{matrix}\right)\left(\begin{matrix}0\\-33\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\left(-33\right)\\-\frac{4}{39}\left(-33\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{33}{13}\\\frac{44}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{33}{13},y=\frac{44}{13}
Tangohia ngā huānga poukapa x me y.
4x+3y=6\times 2-2\times 6
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,4,2,6.
4x+3y=12-12
Mahia ngā whakarea.
4x+3y=0
Tangohia te 12 i te 12, ka 0.
4\left(2x+y\right)-10\left(y-2\right)=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 5,2,4,10.
8x+4y-10\left(y-2\right)=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x+y.
8x+4y-10y+20=5\left(x+y-3\right)-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -10 ki te y-2.
8x-6y+20=5\left(x+y-3\right)-2\left(y-x-1\right)
Pahekotia te 4y me -10y, ka -6y.
8x-6y+20=5x+5y-15-2\left(y-x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+y-3.
8x-6y+20=5x+5y-15-2y+2x+2
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y-x-1.
8x-6y+20=5x+3y-15+2x+2
Pahekotia te 5y me -2y, ka 3y.
8x-6y+20=7x+3y-15+2
Pahekotia te 5x me 2x, ka 7x.
8x-6y+20=7x+3y-13
Tāpirihia te -15 ki te 2, ka -13.
8x-6y+20-7x=3y-13
Tangohia te 7x mai i ngā taha e rua.
x-6y+20=3y-13
Pahekotia te 8x me -7x, ka x.
x-6y+20-3y=-13
Tangohia te 3y mai i ngā taha e rua.
x-9y+20=-13
Pahekotia te -6y me -3y, ka -9y.
x-9y=-13-20
Tangohia te 20 mai i ngā taha e rua.
x-9y=-33
Tangohia te 20 i te -13, ka -33.
4x+3y=0,x-9y=-33
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+3y=0,4x+4\left(-9\right)y=4\left(-33\right)
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x+3y=0,4x-36y=-132
Whakarūnātia.
4x-4x+3y+36y=132
Me tango 4x-36y=-132 mai i 4x+3y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y+36y=132
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
39y=132
Tāpiri 3y ki te 36y.
y=\frac{44}{13}
Whakawehea ngā taha e rua ki te 39.
x-9\times \frac{44}{13}=-33
Whakaurua te \frac{44}{13} mō y ki x-9y=-33. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{396}{13}=-33
Whakareatia -9 ki te \frac{44}{13}.
x=-\frac{33}{13}
Me tāpiri \frac{396}{13} ki ngā taha e rua o te whārite.
x=-\frac{33}{13},y=\frac{44}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}