\left\{ \begin{array} { l } { \frac { x } { 3 } + \frac { y } { 2 } - \frac { z } { 5 } = 9 } \\ { x - 2 y + z = 1 } \\ { \frac { x + y } { 3 } = z - 1 } \end{array} \right.
Whakaoti mō x, y, z
x=15
y=12
z=10
Tohaina
Kua tāruatia ki te papatopenga
10x+15y-6z=270 x-2y+z=1 x+y=3z-3
Me whakarea ia whārite mā te taurea pātahi iti rawa o ngā tauraro kei roto. Whakarūnātia.
x-2y+z=1 10x+15y-6z=270 x+y=3z-3
Me raupapa anō ngā whārite.
x=2y-z+1
Me whakaoti te x-2y+z=1 mō x.
10\left(2y-z+1\right)+15y-6z=270 2y-z+1+y=3z-3
Whakakapia te 2y-z+1 mō te x i te whārite tuarua me te tuatoru.
y=\frac{52}{7}+\frac{16}{35}z z=\frac{3}{4}y+1
Me whakaoti ēnei whārite mō y me z takitahi.
z=\frac{3}{4}\left(\frac{52}{7}+\frac{16}{35}z\right)+1
Whakakapia te \frac{52}{7}+\frac{16}{35}z mō te y i te whārite z=\frac{3}{4}y+1.
z=10
Me whakaoti te z=\frac{3}{4}\left(\frac{52}{7}+\frac{16}{35}z\right)+1 mō z.
y=\frac{52}{7}+\frac{16}{35}\times 10
Whakakapia te 10 mō te z i te whārite y=\frac{52}{7}+\frac{16}{35}z.
y=12
Tātaitia te y i te y=\frac{52}{7}+\frac{16}{35}\times 10.
x=2\times 12-10+1
Whakakapia te 12 mō te y me te 10 mō z i te whārite x=2y-z+1.
x=15
Tātaitia te x i te x=2\times 12-10+1.
x=15 y=12 z=10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}