\left\{ \begin{array} { l } { \frac { x } { 2 } + \frac { y } { 6 } = 1 \frac { 1 } { 2 } } \\ { \frac { 2 x } { 5 } - \frac { y } { 3 } = - \frac { 1 } { 5 } } \end{array} \right.
Whakaoti mō x, y
x=2
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x+y=3\left(1\times 2+1\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6.
3x+y=3\left(2+1\right)
Whakareatia te 1 ki te 2, ka 2.
3x+y=3\times 3
Tāpirihia te 2 ki te 1, ka 3.
3x+y=9
Whakareatia te 3 ki te 3, ka 9.
3\times 2x-5y=-3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
6x-5y=-3
Whakareatia te 3 ki te 2, ka 6.
3x+y=9,6x-5y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+9
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+9\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+3
Whakareatia \frac{1}{3} ki te -y+9.
6\left(-\frac{1}{3}y+3\right)-5y=-3
Whakakapia te -\frac{y}{3}+3 mō te x ki tērā atu whārite, 6x-5y=-3.
-2y+18-5y=-3
Whakareatia 6 ki te -\frac{y}{3}+3.
-7y+18=-3
Tāpiri -2y ki te -5y.
-7y=-21
Me tango 18 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -7.
x=-\frac{1}{3}\times 3+3
Whakaurua te 3 mō y ki x=-\frac{1}{3}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+3
Whakareatia -\frac{1}{3} ki te 3.
x=2
Tāpiri 3 ki te -1.
x=2,y=3
Kua oti te pūnaha te whakatau.
3x+y=3\left(1\times 2+1\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6.
3x+y=3\left(2+1\right)
Whakareatia te 1 ki te 2, ka 2.
3x+y=3\times 3
Tāpirihia te 2 ki te 1, ka 3.
3x+y=9
Whakareatia te 3 ki te 3, ka 9.
3\times 2x-5y=-3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
6x-5y=-3
Whakareatia te 3 ki te 2, ka 6.
3x+y=9,6x-5y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\6&-5\end{matrix}\right))\left(\begin{matrix}3&1\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&-5\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\6&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&-5\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\6&-5\end{matrix}\right))\left(\begin{matrix}9\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3\left(-5\right)-6}&-\frac{1}{3\left(-5\right)-6}\\-\frac{6}{3\left(-5\right)-6}&\frac{3}{3\left(-5\right)-6}\end{matrix}\right)\left(\begin{matrix}9\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&\frac{1}{21}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}9\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\times 9+\frac{1}{21}\left(-3\right)\\\frac{2}{7}\times 9-\frac{1}{7}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
3x+y=3\left(1\times 2+1\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6.
3x+y=3\left(2+1\right)
Whakareatia te 1 ki te 2, ka 2.
3x+y=3\times 3
Tāpirihia te 2 ki te 1, ka 3.
3x+y=9
Whakareatia te 3 ki te 3, ka 9.
3\times 2x-5y=-3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
6x-5y=-3
Whakareatia te 3 ki te 2, ka 6.
3x+y=9,6x-5y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 3x+6y=6\times 9,3\times 6x+3\left(-5\right)y=3\left(-3\right)
Kia ōrite ai a 3x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
18x+6y=54,18x-15y=-9
Whakarūnātia.
18x-18x+6y+15y=54+9
Me tango 18x-15y=-9 mai i 18x+6y=54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y+15y=54+9
Tāpiri 18x ki te -18x. Ka whakakore atu ngā kupu 18x me -18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
21y=54+9
Tāpiri 6y ki te 15y.
21y=63
Tāpiri 54 ki te 9.
y=3
Whakawehea ngā taha e rua ki te 21.
6x-5\times 3=-3
Whakaurua te 3 mō y ki 6x-5y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-15=-3
Whakareatia -5 ki te 3.
6x=12
Me tāpiri 15 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 6.
x=2,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}