Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Whakaoti mō x, y (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+4y^{2}=12
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,3.
y=kx+k
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te k ki te x+1.
3x^{2}+4\left(kx+k\right)^{2}=12
Whakakapia te kx+k mō te y ki tērā atu whārite, 3x^{2}+4y^{2}=12.
3x^{2}+4\left(k^{2}x^{2}+2kkx+k^{2}\right)=12
Pūrua kx+k.
3x^{2}+4k^{2}x^{2}+8k^{2}x+4k^{2}=12
Whakareatia 4 ki te k^{2}x^{2}+2kkx+k^{2}.
\left(4k^{2}+3\right)x^{2}+8k^{2}x+4k^{2}=12
Tāpiri 3x^{2} ki te 4k^{2}x^{2}.
\left(4k^{2}+3\right)x^{2}+8k^{2}x+4k^{2}-12=0
Me tango 12 mai i ngā taha e rua o te whārite.
x=\frac{-8k^{2}±\sqrt{\left(8k^{2}\right)^{2}-4\left(4k^{2}+3\right)\left(4k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3+4k^{2} mō a, 4\times 2kk mō b, me 4k^{2}-12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8k^{2}±\sqrt{64k^{4}-4\left(4k^{2}+3\right)\left(4k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
Pūrua 4\times 2kk.
x=\frac{-8k^{2}±\sqrt{64k^{4}+\left(-16k^{2}-12\right)\left(4k^{2}-12\right)}}{2\left(4k^{2}+3\right)}
Whakareatia -4 ki te 3+4k^{2}.
x=\frac{-8k^{2}±\sqrt{64k^{4}+144+144k^{2}-64k^{4}}}{2\left(4k^{2}+3\right)}
Whakareatia -12-16k^{2} ki te 4k^{2}-12.
x=\frac{-8k^{2}±\sqrt{144k^{2}+144}}{2\left(4k^{2}+3\right)}
Tāpiri 64k^{4} ki te 144+144k^{2}-64k^{4}.
x=\frac{-8k^{2}±12\sqrt{k^{2}+1}}{2\left(4k^{2}+3\right)}
Tuhia te pūtakerua o te 144k^{2}+144.
x=\frac{-8k^{2}±12\sqrt{k^{2}+1}}{8k^{2}+6}
Whakareatia 2 ki te 3+4k^{2}.
x=\frac{-8k^{2}+12\sqrt{k^{2}+1}}{8k^{2}+6}
Nā, me whakaoti te whārite x=\frac{-8k^{2}±12\sqrt{k^{2}+1}}{8k^{2}+6} ina he tāpiri te ±. Tāpiri -8k^{2} ki te 12\sqrt{k^{2}+1}.
x=\frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}
Whakawehe -8k^{2}+12\sqrt{k^{2}+1} ki te 6+8k^{2}.
x=\frac{-8k^{2}-12\sqrt{k^{2}+1}}{8k^{2}+6}
Nā, me whakaoti te whārite x=\frac{-8k^{2}±12\sqrt{k^{2}+1}}{8k^{2}+6} ina he tango te ±. Tango 12\sqrt{k^{2}+1} mai i -8k^{2}.
x=-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}
Whakawehe -8k^{2}-12\sqrt{k^{2}+1} ki te 6+8k^{2}.
y=k\times \frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}+k
E rua ngā otinga mō x: \frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{3+4k^{2}} me -\frac{2\left(2k^{2}+3\sqrt{1+k^{2}}\right)}{3+4k^{2}}. Me whakakapi \frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{3+4k^{2}} mō x ki te whārite y=kx+k hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=\frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}k+k
Whakareatia k ki te \frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{3+4k^{2}}.
y=k\left(-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}\right)+k
Me whakakapi te -\frac{2\left(2k^{2}+3\sqrt{1+k^{2}}\right)}{3+4k^{2}} ināianei mō te x ki te whārite y=kx+k ka whakaoti hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=\left(-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}\right)k+k
Whakareatia k ki te -\frac{2\left(2k^{2}+3\sqrt{1+k^{2}}\right)}{3+4k^{2}}.
y=\frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}k+k,x=\frac{2\left(-2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}\text{ or }y=\left(-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}\right)k+k,x=-\frac{2\left(2k^{2}+3\sqrt{k^{2}+1}\right)}{4k^{2}+3}
Kua oti te pūnaha te whakatau.