Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Whakaoti mō x, y (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2y^{2}=4
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 4, arā, te tauraro pātahi he tino iti rawa te kitea o 4,2.
x-my=1
Whakaarohia te whārite tuarua. Tangohia te my mai i ngā taha e rua.
x+\left(-m\right)y=1,2y^{2}+x^{2}=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+\left(-m\right)y=1
Whakaotia te x+\left(-m\right)y=1 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=my+1
Me tango \left(-m\right)y mai i ngā taha e rua o te whārite.
2y^{2}+\left(my+1\right)^{2}=4
Whakakapia te my+1 mō te x ki tērā atu whārite, 2y^{2}+x^{2}=4.
2y^{2}+m^{2}y^{2}+2my+1=4
Pūrua my+1.
\left(m^{2}+2\right)y^{2}+2my+1=4
Tāpiri 2y^{2} ki te m^{2}y^{2}.
\left(m^{2}+2\right)y^{2}+2my-3=0
Me tango 4 mai i ngā taha e rua o te whārite.
y=\frac{-2m±\sqrt{\left(2m\right)^{2}-4\left(m^{2}+2\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2+1m^{2} mō a, 1\times 1\times 2m mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-2m±\sqrt{4m^{2}-4\left(m^{2}+2\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Pūrua 1\times 1\times 2m.
y=\frac{-2m±\sqrt{4m^{2}+\left(-4m^{2}-8\right)\left(-3\right)}}{2\left(m^{2}+2\right)}
Whakareatia -4 ki te 2+1m^{2}.
y=\frac{-2m±\sqrt{4m^{2}+12m^{2}+24}}{2\left(m^{2}+2\right)}
Whakareatia -8-4m^{2} ki te -3.
y=\frac{-2m±\sqrt{16m^{2}+24}}{2\left(m^{2}+2\right)}
Tāpiri 4m^{2} ki te 24+12m^{2}.
y=\frac{-2m±2\sqrt{4m^{2}+6}}{2\left(m^{2}+2\right)}
Tuhia te pūtakerua o te 24+16m^{2}.
y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4}
Whakareatia 2 ki te 2+1m^{2}.
y=\frac{2\sqrt{4m^{2}+6}-2m}{2m^{2}+4}
Nā, me whakaoti te whārite y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4} ina he tāpiri te ±. Tāpiri -2m ki te 2\sqrt{6+4m^{2}}.
y=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}
Whakawehe -2m+2\sqrt{6+4m^{2}} ki te 4+2m^{2}.
y=\frac{-2\sqrt{4m^{2}+6}-2m}{2m^{2}+4}
Nā, me whakaoti te whārite y=\frac{-2m±2\sqrt{4m^{2}+6}}{2m^{2}+4} ina he tango te ±. Tango 2\sqrt{6+4m^{2}} mai i -2m.
y=-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}
Whakawehe -2m-2\sqrt{6+4m^{2}} ki te 4+2m^{2}.
x=m\times \frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}+1
E rua ngā otinga mō y: \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} me -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}. Me whakakapi \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} mō y ki te whārite x=my+1 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m+1
Whakareatia m ki te \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}}.
x=1+\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m
Tāpiri m\times \frac{-m+\sqrt{6+4m^{2}}}{2+m^{2}} ki te 1.
x=m\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)+1
Me whakakapi te -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}} ināianei mō te y ki te whārite x=my+1 ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m+1
Whakareatia m ki te -\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}.
x=1+\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m
Tāpiri m\left(-\frac{m+\sqrt{6+4m^{2}}}{2+m^{2}}\right) ki te 1.
x=1+\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}m,y=\frac{\sqrt{4m^{2}+6}-m}{m^{2}+2}\text{ or }x=1+\left(-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}\right)m,y=-\frac{\sqrt{4m^{2}+6}+m}{m^{2}+2}
Kua oti te pūnaha te whakatau.