\left\{ \begin{array} { l } { \frac { x + y + 2 } { 3 } - y = 2 } \\ { \frac { x } { 2 } + \frac { 2 y } { 3 } = x - \frac { 4 } { 3 } } \end{array} \right.
Whakaoti mō x, y
x=0
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y+2-3y=6
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
x-2y+2=6
Pahekotia te y me -3y, ka -2y.
x-2y=6-2
Tangohia te 2 mai i ngā taha e rua.
x-2y=4
Tangohia te 2 i te 6, ka 4.
3x+2\times 2y=6x-8
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3x+4y=6x-8
Whakareatia te 2 ki te 2, ka 4.
3x+4y-6x=-8
Tangohia te 6x mai i ngā taha e rua.
-3x+4y=-8
Pahekotia te 3x me -6x, ka -3x.
x-2y=4,-3x+4y=-8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-2y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=2y+4
Me tāpiri 2y ki ngā taha e rua o te whārite.
-3\left(2y+4\right)+4y=-8
Whakakapia te 4+2y mō te x ki tērā atu whārite, -3x+4y=-8.
-6y-12+4y=-8
Whakareatia -3 ki te 4+2y.
-2y-12=-8
Tāpiri -6y ki te 4y.
-2y=4
Me tāpiri 12 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -2.
x=2\left(-2\right)+4
Whakaurua te -2 mō y ki x=2y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4+4
Whakareatia 2 ki te -2.
x=0
Tāpiri 4 ki te -4.
x=0,y=-2
Kua oti te pūnaha te whakatau.
x+y+2-3y=6
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
x-2y+2=6
Pahekotia te y me -3y, ka -2y.
x-2y=6-2
Tangohia te 2 mai i ngā taha e rua.
x-2y=4
Tangohia te 2 i te 6, ka 4.
3x+2\times 2y=6x-8
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3x+4y=6x-8
Whakareatia te 2 ki te 2, ka 4.
3x+4y-6x=-8
Tangohia te 6x mai i ngā taha e rua.
-3x+4y=-8
Pahekotia te 3x me -6x, ka -3x.
x-2y=4,-3x+4y=-8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\-3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\-3&4\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\left(-3\right)\right)}&-\frac{-2}{4-\left(-2\left(-3\right)\right)}\\-\frac{-3}{4-\left(-2\left(-3\right)\right)}&\frac{1}{4-\left(-2\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\-8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&-1\\-\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 4-\left(-8\right)\\-\frac{3}{2}\times 4-\frac{1}{2}\left(-8\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=-2
Tangohia ngā huānga poukapa x me y.
x+y+2-3y=6
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
x-2y+2=6
Pahekotia te y me -3y, ka -2y.
x-2y=6-2
Tangohia te 2 mai i ngā taha e rua.
x-2y=4
Tangohia te 2 i te 6, ka 4.
3x+2\times 2y=6x-8
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3x+4y=6x-8
Whakareatia te 2 ki te 2, ka 4.
3x+4y-6x=-8
Tangohia te 6x mai i ngā taha e rua.
-3x+4y=-8
Pahekotia te 3x me -6x, ka -3x.
x-2y=4,-3x+4y=-8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3x-3\left(-2\right)y=-3\times 4,-3x+4y=-8
Kia ōrite ai a x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3x+6y=-12,-3x+4y=-8
Whakarūnātia.
-3x+3x+6y-4y=-12+8
Me tango -3x+4y=-8 mai i -3x+6y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-4y=-12+8
Tāpiri -3x ki te 3x. Ka whakakore atu ngā kupu -3x me 3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-12+8
Tāpiri 6y ki te -4y.
2y=-4
Tāpiri -12 ki te 8.
y=-2
Whakawehea ngā taha e rua ki te 2.
-3x+4\left(-2\right)=-8
Whakaurua te -2 mō y ki -3x+4y=-8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x-8=-8
Whakareatia 4 ki te -2.
-3x=0
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -3.
x=0,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}