\left\{ \begin{array} { l } { \frac { x + 2 } { y + 5 } = \frac { x + 7 } { y } } \\ { 2 x - 4 y = - 1 } \end{array} \right.
Whakaoti mō x, y
x = -\frac{29}{6} = -4\frac{5}{6} \approx -4.833333333
y = -\frac{13}{6} = -2\frac{1}{6} \approx -2.166666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
y\left(x+2\right)=\left(y+5\right)\left(x+7\right)
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -5,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(y+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+5,y.
yx+2y=\left(y+5\right)\left(x+7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x+2.
yx+2y=yx+7y+5x+35
Whakamahia te āhuatanga tohatoha hei whakarea te y+5 ki te x+7.
yx+2y-yx=7y+5x+35
Tangohia te yx mai i ngā taha e rua.
2y=7y+5x+35
Pahekotia te yx me -yx, ka 0.
2y-7y=5x+35
Tangohia te 7y mai i ngā taha e rua.
-5y=5x+35
Pahekotia te 2y me -7y, ka -5y.
y=-\frac{1}{5}\left(5x+35\right)
Whakawehea ngā taha e rua ki te -5.
y=-x-7
Whakareatia -\frac{1}{5} ki te 35+5x.
-4\left(-x-7\right)+2x=-1
Whakakapia te -x-7 mō te y ki tērā atu whārite, -4y+2x=-1.
4x+28+2x=-1
Whakareatia -4 ki te -x-7.
6x+28=-1
Tāpiri 4x ki te 2x.
6x=-29
Me tango 28 mai i ngā taha e rua o te whārite.
x=-\frac{29}{6}
Whakawehea ngā taha e rua ki te 6.
y=-\left(-\frac{29}{6}\right)-7
Whakaurua te -\frac{29}{6} mō x ki y=-x-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{29}{6}-7
Whakareatia -1 ki te -\frac{29}{6}.
y=-\frac{13}{6}
Tāpiri -7 ki te \frac{29}{6}.
y=-\frac{13}{6},x=-\frac{29}{6}
Kua oti te pūnaha te whakatau.
y\left(x+2\right)=\left(y+5\right)\left(x+7\right)
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -5,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(y+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+5,y.
yx+2y=\left(y+5\right)\left(x+7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x+2.
yx+2y=yx+7y+5x+35
Whakamahia te āhuatanga tohatoha hei whakarea te y+5 ki te x+7.
yx+2y-yx=7y+5x+35
Tangohia te yx mai i ngā taha e rua.
2y=7y+5x+35
Pahekotia te yx me -yx, ka 0.
2y-7y=5x+35
Tangohia te 7y mai i ngā taha e rua.
-5y=5x+35
Pahekotia te 2y me -7y, ka -5y.
-5y-5x=35
Tangohia te 5x mai i ngā taha e rua.
-5y-5x=35,-4y+2x=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&-5\\-4&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}35\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&-5\\-4&2\end{matrix}\right))\left(\begin{matrix}-5&-5\\-4&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-5\\-4&2\end{matrix}\right))\left(\begin{matrix}35\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&-5\\-4&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-5\\-4&2\end{matrix}\right))\left(\begin{matrix}35\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-5\\-4&2\end{matrix}\right))\left(\begin{matrix}35\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-\left(-5\left(-4\right)\right)}&-\frac{-5}{-5\times 2-\left(-5\left(-4\right)\right)}\\-\frac{-4}{-5\times 2-\left(-5\left(-4\right)\right)}&-\frac{5}{-5\times 2-\left(-5\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}35\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&-\frac{1}{6}\\-\frac{2}{15}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}35\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}\times 35-\frac{1}{6}\left(-1\right)\\-\frac{2}{15}\times 35+\frac{1}{6}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{6}\\-\frac{29}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-\frac{13}{6},x=-\frac{29}{6}
Tangohia ngā huānga poukapa y me x.
y\left(x+2\right)=\left(y+5\right)\left(x+7\right)
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe y ki tētahi o ngā uara -5,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te y\left(y+5\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+5,y.
yx+2y=\left(y+5\right)\left(x+7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te x+2.
yx+2y=yx+7y+5x+35
Whakamahia te āhuatanga tohatoha hei whakarea te y+5 ki te x+7.
yx+2y-yx=7y+5x+35
Tangohia te yx mai i ngā taha e rua.
2y=7y+5x+35
Pahekotia te yx me -yx, ka 0.
2y-7y=5x+35
Tangohia te 7y mai i ngā taha e rua.
-5y=5x+35
Pahekotia te 2y me -7y, ka -5y.
-5y-5x=35
Tangohia te 5x mai i ngā taha e rua.
-5y-5x=35,-4y+2x=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\left(-5\right)y-4\left(-5\right)x=-4\times 35,-5\left(-4\right)y-5\times 2x=-5\left(-1\right)
Kia ōrite ai a -5y me -4y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
20y+20x=-140,20y-10x=5
Whakarūnātia.
20y-20y+20x+10x=-140-5
Me tango 20y-10x=5 mai i 20y+20x=-140 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20x+10x=-140-5
Tāpiri 20y ki te -20y. Ka whakakore atu ngā kupu 20y me -20y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
30x=-140-5
Tāpiri 20x ki te 10x.
30x=-145
Tāpiri -140 ki te -5.
x=-\frac{29}{6}
Whakawehea ngā taha e rua ki te 30.
-4y+2\left(-\frac{29}{6}\right)=-1
Whakaurua te -\frac{29}{6} mō x ki -4y+2x=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-4y-\frac{29}{3}=-1
Whakareatia 2 ki te -\frac{29}{6}.
-4y=\frac{26}{3}
Me tāpiri \frac{29}{3} ki ngā taha e rua o te whārite.
y=-\frac{13}{6}
Whakawehea ngā taha e rua ki te -4.
y=-\frac{13}{6},x=-\frac{29}{6}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}