\left\{ \begin{array} { l } { \frac { 5 ( x - 3 ) } { 4 } - \frac { 3 ( 2 y + 1 ) } { 10 } = \frac { 4 - 7 ( x + y + 1 ) } { 8 } } \\ { 6 x - 5 ( 2 y - 7 ) = 21 } \end{array} \right.
Whakaoti mō x, y
x = \frac{329}{229} = 1\frac{100}{229} \approx 1.436681223
y = \frac{518}{229} = 2\frac{60}{229} \approx 2.262008734
Graph
Tohaina
Kua tāruatia ki te papatopenga
10\times 5\left(x-3\right)-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 40, arā, te tauraro pātahi he tino iti rawa te kitea o 4,10,8.
50\left(x-3\right)-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakareatia te 10 ki te 5, ka 50.
50x-150-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 50 ki te x-3.
50x-150-12\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakareatia te -4 ki te 3, ka -12.
50x-150-24y-12=5\left(4-7\left(x+y+1\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 2y+1.
50x-162-24y=5\left(4-7\left(x+y+1\right)\right)
Tangohia te 12 i te -150, ka -162.
50x-162-24y=5\left(4-7x-7y-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te x+y+1.
50x-162-24y=5\left(-3-7x-7y\right)
Tangohia te 7 i te 4, ka -3.
50x-162-24y=-15-35x-35y
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te -3-7x-7y.
50x-162-24y+35x=-15-35y
Me tāpiri te 35x ki ngā taha e rua.
85x-162-24y=-15-35y
Pahekotia te 50x me 35x, ka 85x.
85x-162-24y+35y=-15
Me tāpiri te 35y ki ngā taha e rua.
85x-162+11y=-15
Pahekotia te -24y me 35y, ka 11y.
85x+11y=-15+162
Me tāpiri te 162 ki ngā taha e rua.
85x+11y=147
Tāpirihia te -15 ki te 162, ka 147.
6x-10y+35=21
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2y-7.
6x-10y=21-35
Tangohia te 35 mai i ngā taha e rua.
6x-10y=-14
Tangohia te 35 i te 21, ka -14.
85x+11y=147,6x-10y=-14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
85x+11y=147
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
85x=-11y+147
Me tango 11y mai i ngā taha e rua o te whārite.
x=\frac{1}{85}\left(-11y+147\right)
Whakawehea ngā taha e rua ki te 85.
x=-\frac{11}{85}y+\frac{147}{85}
Whakareatia \frac{1}{85} ki te -11y+147.
6\left(-\frac{11}{85}y+\frac{147}{85}\right)-10y=-14
Whakakapia te \frac{-11y+147}{85} mō te x ki tērā atu whārite, 6x-10y=-14.
-\frac{66}{85}y+\frac{882}{85}-10y=-14
Whakareatia 6 ki te \frac{-11y+147}{85}.
-\frac{916}{85}y+\frac{882}{85}=-14
Tāpiri -\frac{66y}{85} ki te -10y.
-\frac{916}{85}y=-\frac{2072}{85}
Me tango \frac{882}{85} mai i ngā taha e rua o te whārite.
y=\frac{518}{229}
Whakawehea ngā taha e rua o te whārite ki te -\frac{916}{85}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{11}{85}\times \frac{518}{229}+\frac{147}{85}
Whakaurua te \frac{518}{229} mō y ki x=-\frac{11}{85}y+\frac{147}{85}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5698}{19465}+\frac{147}{85}
Whakareatia -\frac{11}{85} ki te \frac{518}{229} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{329}{229}
Tāpiri \frac{147}{85} ki te -\frac{5698}{19465} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{329}{229},y=\frac{518}{229}
Kua oti te pūnaha te whakatau.
10\times 5\left(x-3\right)-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 40, arā, te tauraro pātahi he tino iti rawa te kitea o 4,10,8.
50\left(x-3\right)-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakareatia te 10 ki te 5, ka 50.
50x-150-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 50 ki te x-3.
50x-150-12\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakareatia te -4 ki te 3, ka -12.
50x-150-24y-12=5\left(4-7\left(x+y+1\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 2y+1.
50x-162-24y=5\left(4-7\left(x+y+1\right)\right)
Tangohia te 12 i te -150, ka -162.
50x-162-24y=5\left(4-7x-7y-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te x+y+1.
50x-162-24y=5\left(-3-7x-7y\right)
Tangohia te 7 i te 4, ka -3.
50x-162-24y=-15-35x-35y
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te -3-7x-7y.
50x-162-24y+35x=-15-35y
Me tāpiri te 35x ki ngā taha e rua.
85x-162-24y=-15-35y
Pahekotia te 50x me 35x, ka 85x.
85x-162-24y+35y=-15
Me tāpiri te 35y ki ngā taha e rua.
85x-162+11y=-15
Pahekotia te -24y me 35y, ka 11y.
85x+11y=-15+162
Me tāpiri te 162 ki ngā taha e rua.
85x+11y=147
Tāpirihia te -15 ki te 162, ka 147.
6x-10y+35=21
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2y-7.
6x-10y=21-35
Tangohia te 35 mai i ngā taha e rua.
6x-10y=-14
Tangohia te 35 i te 21, ka -14.
85x+11y=147,6x-10y=-14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}85&11\\6&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}147\\-14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}85&11\\6&-10\end{matrix}\right))\left(\begin{matrix}85&11\\6&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}85&11\\6&-10\end{matrix}\right))\left(\begin{matrix}147\\-14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}85&11\\6&-10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}85&11\\6&-10\end{matrix}\right))\left(\begin{matrix}147\\-14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}85&11\\6&-10\end{matrix}\right))\left(\begin{matrix}147\\-14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{85\left(-10\right)-11\times 6}&-\frac{11}{85\left(-10\right)-11\times 6}\\-\frac{6}{85\left(-10\right)-11\times 6}&\frac{85}{85\left(-10\right)-11\times 6}\end{matrix}\right)\left(\begin{matrix}147\\-14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{458}&\frac{11}{916}\\\frac{3}{458}&-\frac{85}{916}\end{matrix}\right)\left(\begin{matrix}147\\-14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{458}\times 147+\frac{11}{916}\left(-14\right)\\\frac{3}{458}\times 147-\frac{85}{916}\left(-14\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{329}{229}\\\frac{518}{229}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{329}{229},y=\frac{518}{229}
Tangohia ngā huānga poukapa x me y.
10\times 5\left(x-3\right)-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 40, arā, te tauraro pātahi he tino iti rawa te kitea o 4,10,8.
50\left(x-3\right)-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakareatia te 10 ki te 5, ka 50.
50x-150-4\times 3\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 50 ki te x-3.
50x-150-12\left(2y+1\right)=5\left(4-7\left(x+y+1\right)\right)
Whakareatia te -4 ki te 3, ka -12.
50x-150-24y-12=5\left(4-7\left(x+y+1\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 2y+1.
50x-162-24y=5\left(4-7\left(x+y+1\right)\right)
Tangohia te 12 i te -150, ka -162.
50x-162-24y=5\left(4-7x-7y-7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te x+y+1.
50x-162-24y=5\left(-3-7x-7y\right)
Tangohia te 7 i te 4, ka -3.
50x-162-24y=-15-35x-35y
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te -3-7x-7y.
50x-162-24y+35x=-15-35y
Me tāpiri te 35x ki ngā taha e rua.
85x-162-24y=-15-35y
Pahekotia te 50x me 35x, ka 85x.
85x-162-24y+35y=-15
Me tāpiri te 35y ki ngā taha e rua.
85x-162+11y=-15
Pahekotia te -24y me 35y, ka 11y.
85x+11y=-15+162
Me tāpiri te 162 ki ngā taha e rua.
85x+11y=147
Tāpirihia te -15 ki te 162, ka 147.
6x-10y+35=21
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2y-7.
6x-10y=21-35
Tangohia te 35 mai i ngā taha e rua.
6x-10y=-14
Tangohia te 35 i te 21, ka -14.
85x+11y=147,6x-10y=-14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 85x+6\times 11y=6\times 147,85\times 6x+85\left(-10\right)y=85\left(-14\right)
Kia ōrite ai a 85x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 85.
510x+66y=882,510x-850y=-1190
Whakarūnātia.
510x-510x+66y+850y=882+1190
Me tango 510x-850y=-1190 mai i 510x+66y=882 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
66y+850y=882+1190
Tāpiri 510x ki te -510x. Ka whakakore atu ngā kupu 510x me -510x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
916y=882+1190
Tāpiri 66y ki te 850y.
916y=2072
Tāpiri 882 ki te 1190.
y=\frac{518}{229}
Whakawehea ngā taha e rua ki te 916.
6x-10\times \frac{518}{229}=-14
Whakaurua te \frac{518}{229} mō y ki 6x-10y=-14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-\frac{5180}{229}=-14
Whakareatia -10 ki te \frac{518}{229}.
6x=\frac{1974}{229}
Me tāpiri \frac{5180}{229} ki ngā taha e rua o te whārite.
x=\frac{329}{229}
Whakawehea ngā taha e rua ki te 6.
x=\frac{329}{229},y=\frac{518}{229}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}