Tīpoka ki ngā ihirangi matua
Whakaoti mō a, c, b, x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\left(-\frac{3}{2}\right)\times \frac{9}{2}-\left(\frac{1}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{-6\times \frac{9}{2}-\left(\frac{1}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Whakareatia te 4 ki te -\frac{3}{2}, ka -6.
\frac{-27-\left(\frac{1}{2}\right)^{2}}{4\left(-\frac{3}{2}\right)}=x
Whakareatia te -6 ki te \frac{9}{2}, ka -27.
\frac{-27-\frac{1}{4}}{4\left(-\frac{3}{2}\right)}=x
Tātaihia te \frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{-\frac{109}{4}}{4\left(-\frac{3}{2}\right)}=x
Tangohia te \frac{1}{4} i te -27, ka -\frac{109}{4}.
\frac{-\frac{109}{4}}{-6}=x
Whakareatia te 4 ki te -\frac{3}{2}, ka -6.
\frac{-109}{4\left(-6\right)}=x
Tuhia te \frac{-\frac{109}{4}}{-6} hei hautanga kotahi.
\frac{-109}{-24}=x
Whakareatia te 4 ki te -6, ka -24.
\frac{109}{24}=x
Ka taea te hautanga \frac{-109}{-24} te whakamāmā ki te \frac{109}{24} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=\frac{109}{24}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a=-\frac{3}{2} c=\frac{9}{2} b=\frac{1}{2} x=\frac{109}{24}
Kua oti te pūnaha te whakatau.