\left\{ \begin{array} { l } { \frac { 3 x - 7 } { 4 } - \frac { 2 y + 1 } { 6 } = 0 } \\ { \frac { x + 2 } { 5 } - \frac { 5 y + 4 } { 3 } = - 2 } \end{array} \right.
Whakaoti mō x, y
x=3
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(3x-7\right)-2\left(2y+1\right)=0
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6.
9x-21-2\left(2y+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-7.
9x-21-4y-2=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 2y+1.
9x-23-4y=0
Tangohia te 2 i te -21, ka -23.
9x-4y=23
Me tāpiri te 23 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3\left(x+2\right)-5\left(5y+4\right)=-30
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
3x+6-5\left(5y+4\right)=-30
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-25y-20=-30
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 5y+4.
3x-14-25y=-30
Tangohia te 20 i te 6, ka -14.
3x-25y=-30+14
Me tāpiri te 14 ki ngā taha e rua.
3x-25y=-16
Tāpirihia te -30 ki te 14, ka -16.
9x-4y=23,3x-25y=-16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
9x-4y=23
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
9x=4y+23
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{9}\left(4y+23\right)
Whakawehea ngā taha e rua ki te 9.
x=\frac{4}{9}y+\frac{23}{9}
Whakareatia \frac{1}{9} ki te 4y+23.
3\left(\frac{4}{9}y+\frac{23}{9}\right)-25y=-16
Whakakapia te \frac{4y+23}{9} mō te x ki tērā atu whārite, 3x-25y=-16.
\frac{4}{3}y+\frac{23}{3}-25y=-16
Whakareatia 3 ki te \frac{4y+23}{9}.
-\frac{71}{3}y+\frac{23}{3}=-16
Tāpiri \frac{4y}{3} ki te -25y.
-\frac{71}{3}y=-\frac{71}{3}
Me tango \frac{23}{3} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{71}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{4+23}{9}
Whakaurua te 1 mō y ki x=\frac{4}{9}y+\frac{23}{9}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri \frac{23}{9} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=1
Kua oti te pūnaha te whakatau.
3\left(3x-7\right)-2\left(2y+1\right)=0
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6.
9x-21-2\left(2y+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-7.
9x-21-4y-2=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 2y+1.
9x-23-4y=0
Tangohia te 2 i te -21, ka -23.
9x-4y=23
Me tāpiri te 23 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3\left(x+2\right)-5\left(5y+4\right)=-30
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
3x+6-5\left(5y+4\right)=-30
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-25y-20=-30
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 5y+4.
3x-14-25y=-30
Tangohia te 20 i te 6, ka -14.
3x-25y=-30+14
Me tāpiri te 14 ki ngā taha e rua.
3x-25y=-16
Tāpirihia te -30 ki te 14, ka -16.
9x-4y=23,3x-25y=-16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}9&-4\\3&-25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}23\\-16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}9&-4\\3&-25\end{matrix}\right))\left(\begin{matrix}9&-4\\3&-25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\3&-25\end{matrix}\right))\left(\begin{matrix}23\\-16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}9&-4\\3&-25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\3&-25\end{matrix}\right))\left(\begin{matrix}23\\-16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&-4\\3&-25\end{matrix}\right))\left(\begin{matrix}23\\-16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{25}{9\left(-25\right)-\left(-4\times 3\right)}&-\frac{-4}{9\left(-25\right)-\left(-4\times 3\right)}\\-\frac{3}{9\left(-25\right)-\left(-4\times 3\right)}&\frac{9}{9\left(-25\right)-\left(-4\times 3\right)}\end{matrix}\right)\left(\begin{matrix}23\\-16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{213}&-\frac{4}{213}\\\frac{1}{71}&-\frac{3}{71}\end{matrix}\right)\left(\begin{matrix}23\\-16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{213}\times 23-\frac{4}{213}\left(-16\right)\\\frac{1}{71}\times 23-\frac{3}{71}\left(-16\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=1
Tangohia ngā huānga poukapa x me y.
3\left(3x-7\right)-2\left(2y+1\right)=0
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6.
9x-21-2\left(2y+1\right)=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3x-7.
9x-21-4y-2=0
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 2y+1.
9x-23-4y=0
Tangohia te 2 i te -21, ka -23.
9x-4y=23
Me tāpiri te 23 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
3\left(x+2\right)-5\left(5y+4\right)=-30
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 15, arā, te tauraro pātahi he tino iti rawa te kitea o 5,3.
3x+6-5\left(5y+4\right)=-30
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+2.
3x+6-25y-20=-30
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 5y+4.
3x-14-25y=-30
Tangohia te 20 i te 6, ka -14.
3x-25y=-30+14
Me tāpiri te 14 ki ngā taha e rua.
3x-25y=-16
Tāpirihia te -30 ki te 14, ka -16.
9x-4y=23,3x-25y=-16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 9x+3\left(-4\right)y=3\times 23,9\times 3x+9\left(-25\right)y=9\left(-16\right)
Kia ōrite ai a 9x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 9.
27x-12y=69,27x-225y=-144
Whakarūnātia.
27x-27x-12y+225y=69+144
Me tango 27x-225y=-144 mai i 27x-12y=69 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y+225y=69+144
Tāpiri 27x ki te -27x. Ka whakakore atu ngā kupu 27x me -27x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
213y=69+144
Tāpiri -12y ki te 225y.
213y=213
Tāpiri 69 ki te 144.
y=1
Whakawehea ngā taha e rua ki te 213.
3x-25=-16
Whakaurua te 1 mō y ki 3x-25y=-16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=9
Me tāpiri 25 ki ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 3.
x=3,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}