Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+5y=-5\times 6
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 6.
3x+5y=-30
Whakareatia te -5 ki te 6, ka -30.
2x+14+3y=-5
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+7.
2x+3y=-5-14
Tangohia te 14 mai i ngā taha e rua.
2x+3y=-19
Tangohia te 14 i te -5, ka -19.
3x+5y=-30,2x+3y=-19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+5y=-30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-5y-30
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-5y-30\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{5}{3}y-10
Whakareatia \frac{1}{3} ki te -5y-30.
2\left(-\frac{5}{3}y-10\right)+3y=-19
Whakakapia te -\frac{5y}{3}-10 mō te x ki tērā atu whārite, 2x+3y=-19.
-\frac{10}{3}y-20+3y=-19
Whakareatia 2 ki te -\frac{5y}{3}-10.
-\frac{1}{3}y-20=-19
Tāpiri -\frac{10y}{3} ki te 3y.
-\frac{1}{3}y=1
Me tāpiri 20 ki ngā taha e rua o te whārite.
y=-3
Me whakarea ngā taha e rua ki te -3.
x=-\frac{5}{3}\left(-3\right)-10
Whakaurua te -3 mō y ki x=-\frac{5}{3}y-10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5-10
Whakareatia -\frac{5}{3} ki te -3.
x=-5
Tāpiri -10 ki te 5.
x=-5,y=-3
Kua oti te pūnaha te whakatau.
3x+5y=-5\times 6
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 6.
3x+5y=-30
Whakareatia te -5 ki te 6, ka -30.
2x+14+3y=-5
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+7.
2x+3y=-5-14
Tangohia te 14 mai i ngā taha e rua.
2x+3y=-19
Tangohia te 14 i te -5, ka -19.
3x+5y=-30,2x+3y=-19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&5\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\-19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&5\\2&3\end{matrix}\right))\left(\begin{matrix}3&5\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&3\end{matrix}\right))\left(\begin{matrix}-30\\-19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&5\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&3\end{matrix}\right))\left(\begin{matrix}-30\\-19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\2&3\end{matrix}\right))\left(\begin{matrix}-30\\-19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-5\times 2}&-\frac{5}{3\times 3-5\times 2}\\-\frac{2}{3\times 3-5\times 2}&\frac{3}{3\times 3-5\times 2}\end{matrix}\right)\left(\begin{matrix}-30\\-19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&5\\2&-3\end{matrix}\right)\left(\begin{matrix}-30\\-19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\left(-30\right)+5\left(-19\right)\\2\left(-30\right)-3\left(-19\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=-3
Tangohia ngā huānga poukapa x me y.
3x+5y=-5\times 6
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 6.
3x+5y=-30
Whakareatia te -5 ki te 6, ka -30.
2x+14+3y=-5
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+7.
2x+3y=-5-14
Tangohia te 14 mai i ngā taha e rua.
2x+3y=-19
Tangohia te 14 i te -5, ka -19.
3x+5y=-30,2x+3y=-19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2\times 5y=2\left(-30\right),3\times 2x+3\times 3y=3\left(-19\right)
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+10y=-60,6x+9y=-57
Whakarūnātia.
6x-6x+10y-9y=-60+57
Me tango 6x+9y=-57 mai i 6x+10y=-60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10y-9y=-60+57
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=-60+57
Tāpiri 10y ki te -9y.
y=-3
Tāpiri -60 ki te 57.
2x+3\left(-3\right)=-19
Whakaurua te -3 mō y ki 2x+3y=-19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-9=-19
Whakareatia 3 ki te -3.
2x=-10
Me tāpiri 9 ki ngā taha e rua o te whārite.
x=-5
Whakawehea ngā taha e rua ki te 2.
x=-5,y=-3
Kua oti te pūnaha te whakatau.