\left\{ \begin{array} { l } { \frac { 2 x - y } { 5 } = 3 } \\ { \frac { x + y } { 3 } = 3 } \end{array} \right.
Whakaoti mō x, y
x=8
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-y=3\times 5
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 5.
2x-y=15
Whakareatia te 3 ki te 5, ka 15.
x+y=3\times 3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 3.
x+y=9
Whakareatia te 3 ki te 3, ka 9.
2x-y=15,x+y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+15
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+15\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+\frac{15}{2}
Whakareatia \frac{1}{2} ki te y+15.
\frac{1}{2}y+\frac{15}{2}+y=9
Whakakapia te \frac{15+y}{2} mō te x ki tērā atu whārite, x+y=9.
\frac{3}{2}y+\frac{15}{2}=9
Tāpiri \frac{y}{2} ki te y.
\frac{3}{2}y=\frac{3}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1+15}{2}
Whakaurua te 1 mō y ki x=\frac{1}{2}y+\frac{15}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=8
Tāpiri \frac{15}{2} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=8,y=1
Kua oti te pūnaha te whakatau.
2x-y=3\times 5
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 5.
2x-y=15
Whakareatia te 3 ki te 5, ka 15.
x+y=3\times 3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 3.
x+y=9
Whakareatia te 3 ki te 3, ka 9.
2x-y=15,x+y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}2&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}15\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}15\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&1\end{matrix}\right))\left(\begin{matrix}15\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-1\right)}&-\frac{-1}{2-\left(-1\right)}\\-\frac{1}{2-\left(-1\right)}&\frac{2}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}15\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}15\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 15+\frac{1}{3}\times 9\\-\frac{1}{3}\times 15+\frac{2}{3}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=8,y=1
Tangohia ngā huānga poukapa x me y.
2x-y=3\times 5
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 5.
2x-y=15
Whakareatia te 3 ki te 5, ka 15.
x+y=3\times 3
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 3.
x+y=9
Whakareatia te 3 ki te 3, ka 9.
2x-y=15,x+y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-y=15,2x+2y=2\times 9
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x-y=15,2x+2y=18
Whakarūnātia.
2x-2x-y-2y=15-18
Me tango 2x+2y=18 mai i 2x-y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y-2y=15-18
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=15-18
Tāpiri -y ki te -2y.
-3y=-3
Tāpiri 15 ki te -18.
y=1
Whakawehea ngā taha e rua ki te -3.
x+1=9
Whakaurua te 1 mō y ki x+y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=8
Me tango 1 mai i ngā taha e rua o te whārite.
x=8,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}