\left\{ \begin{array} { l } { \frac { 2 x - 5 } { 3 } + \frac { 3 y - 4 } { 3 } = - \frac { 1 } { 3 } } \\ { y = x + 5 } \end{array} \right.
Whakaoti mō x, y
x = -\frac{7}{5} = -1\frac{2}{5} = -1.4
y = \frac{18}{5} = 3\frac{3}{5} = 3.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-5+3y-4=-1
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x-9+3y=-1
Tangohia te 4 i te -5, ka -9.
2x+3y=-1+9
Me tāpiri te 9 ki ngā taha e rua.
2x+3y=8
Tāpirihia te -1 ki te 9, ka 8.
y-x=5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x+3y=8,-x+y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+8
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+8\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+4
Whakareatia \frac{1}{2} ki te -3y+8.
-\left(-\frac{3}{2}y+4\right)+y=5
Whakakapia te -\frac{3y}{2}+4 mō te x ki tērā atu whārite, -x+y=5.
\frac{3}{2}y-4+y=5
Whakareatia -1 ki te -\frac{3y}{2}+4.
\frac{5}{2}y-4=5
Tāpiri \frac{3y}{2} ki te y.
\frac{5}{2}y=9
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=\frac{18}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times \frac{18}{5}+4
Whakaurua te \frac{18}{5} mō y ki x=-\frac{3}{2}y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{27}{5}+4
Whakareatia -\frac{3}{2} ki te \frac{18}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{7}{5}
Tāpiri 4 ki te -\frac{27}{5}.
x=-\frac{7}{5},y=\frac{18}{5}
Kua oti te pūnaha te whakatau.
2x-5+3y-4=-1
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x-9+3y=-1
Tangohia te 4 i te -5, ka -9.
2x+3y=-1+9
Me tāpiri te 9 ki ngā taha e rua.
2x+3y=8
Tāpirihia te -1 ki te 9, ka 8.
y-x=5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x+3y=8,-x+y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}2&3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-1&1\end{matrix}\right))\left(\begin{matrix}8\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-1\right)}&-\frac{3}{2-3\left(-1\right)}\\-\frac{-1}{2-3\left(-1\right)}&\frac{2}{2-3\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&-\frac{3}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 8-\frac{3}{5}\times 5\\\frac{1}{5}\times 8+\frac{2}{5}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5}\\\frac{18}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{7}{5},y=\frac{18}{5}
Tangohia ngā huānga poukapa x me y.
2x-5+3y-4=-1
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x-9+3y=-1
Tangohia te 4 i te -5, ka -9.
2x+3y=-1+9
Me tāpiri te 9 ki ngā taha e rua.
2x+3y=8
Tāpirihia te -1 ki te 9, ka 8.
y-x=5
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x+3y=8,-x+y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-3y=-8,2\left(-1\right)x+2y=2\times 5
Kia ōrite ai a 2x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-2x-3y=-8,-2x+2y=10
Whakarūnātia.
-2x+2x-3y-2y=-8-10
Me tango -2x+2y=10 mai i -2x-3y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-2y=-8-10
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=-8-10
Tāpiri -3y ki te -2y.
-5y=-18
Tāpiri -8 ki te -10.
y=\frac{18}{5}
Whakawehea ngā taha e rua ki te -5.
-x+\frac{18}{5}=5
Whakaurua te \frac{18}{5} mō y ki -x+y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=\frac{7}{5}
Me tango \frac{18}{5} mai i ngā taha e rua o te whārite.
x=-\frac{7}{5}
Whakawehea ngā taha e rua ki te -1.
x=-\frac{7}{5},y=\frac{18}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}