\left\{ \begin{array} { l } { \frac { 2 x + 7 y } { 3 } + y = 0 } \\ { x + \frac { 5 y - 1 } { 2 } = 2 - x } \end{array} \right.
Whakaoti mō x, y
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y=-\frac{1}{3}\approx -0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+7y+3y=0
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x+10y=0
Pahekotia te 7y me 3y, ka 10y.
2x+5y-1=4-2x
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+5y-1+2x=4
Me tāpiri te 2x ki ngā taha e rua.
4x+5y-1=4
Pahekotia te 2x me 2x, ka 4x.
4x+5y=4+1
Me tāpiri te 1 ki ngā taha e rua.
4x+5y=5
Tāpirihia te 4 ki te 1, ka 5.
2x+10y=0,4x+5y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+10y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-10y
Me tango 10y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-10\right)y
Whakawehea ngā taha e rua ki te 2.
x=-5y
Whakareatia \frac{1}{2} ki te -10y.
4\left(-5\right)y+5y=5
Whakakapia te -5y mō te x ki tērā atu whārite, 4x+5y=5.
-20y+5y=5
Whakareatia 4 ki te -5y.
-15y=5
Tāpiri -20y ki te 5y.
y=-\frac{1}{3}
Whakawehea ngā taha e rua ki te -15.
x=-5\left(-\frac{1}{3}\right)
Whakaurua te -\frac{1}{3} mō y ki x=-5y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{3}
Whakareatia -5 ki te -\frac{1}{3}.
x=\frac{5}{3},y=-\frac{1}{3}
Kua oti te pūnaha te whakatau.
2x+7y+3y=0
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x+10y=0
Pahekotia te 7y me 3y, ka 10y.
2x+5y-1=4-2x
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+5y-1+2x=4
Me tāpiri te 2x ki ngā taha e rua.
4x+5y-1=4
Pahekotia te 2x me 2x, ka 4x.
4x+5y=4+1
Me tāpiri te 1 ki ngā taha e rua.
4x+5y=5
Tāpirihia te 4 ki te 1, ka 5.
2x+10y=0,4x+5y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&10\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}2&10\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&10\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&10\\4&5\end{matrix}\right))\left(\begin{matrix}0\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-10\times 4}&-\frac{10}{2\times 5-10\times 4}\\-\frac{4}{2\times 5-10\times 4}&\frac{2}{2\times 5-10\times 4}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{3}\\\frac{2}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}0\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5\\-\frac{1}{15}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\\-\frac{1}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{3},y=-\frac{1}{3}
Tangohia ngā huānga poukapa x me y.
2x+7y+3y=0
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x+10y=0
Pahekotia te 7y me 3y, ka 10y.
2x+5y-1=4-2x
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
2x+5y-1+2x=4
Me tāpiri te 2x ki ngā taha e rua.
4x+5y-1=4
Pahekotia te 2x me 2x, ka 4x.
4x+5y=4+1
Me tāpiri te 1 ki ngā taha e rua.
4x+5y=5
Tāpirihia te 4 ki te 1, ka 5.
2x+10y=0,4x+5y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\times 10y=0,2\times 4x+2\times 5y=2\times 5
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+40y=0,8x+10y=10
Whakarūnātia.
8x-8x+40y-10y=-10
Me tango 8x+10y=10 mai i 8x+40y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
40y-10y=-10
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
30y=-10
Tāpiri 40y ki te -10y.
y=-\frac{1}{3}
Whakawehea ngā taha e rua ki te 30.
4x+5\left(-\frac{1}{3}\right)=5
Whakaurua te -\frac{1}{3} mō y ki 4x+5y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x-\frac{5}{3}=5
Whakareatia 5 ki te -\frac{1}{3}.
4x=\frac{20}{3}
Me tāpiri \frac{5}{3} ki ngā taha e rua o te whārite.
x=\frac{5}{3}
Whakawehea ngā taha e rua ki te 4.
x=\frac{5}{3},y=-\frac{1}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}