\left\{ \begin{array} { l } { \frac { 2 } { 3 } x + \frac { 1 } { 2 } y = 5 } \\ { x - 3 y = 6 . } \end{array} \right.
Whakaoti mō x, y
x = \frac{36}{5} = 7\frac{1}{5} = 7.2
y=\frac{2}{5}=0.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{2}{3}x+\frac{1}{2}y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{2}{3}x=-\frac{1}{2}y+5
Me tango \frac{y}{2} mai i ngā taha e rua o te whārite.
x=\frac{3}{2}\left(-\frac{1}{2}y+5\right)
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}y+\frac{15}{2}
Whakareatia \frac{3}{2} ki te -\frac{y}{2}+5.
-\frac{3}{4}y+\frac{15}{2}-3y=6
Whakakapia te -\frac{3y}{4}+\frac{15}{2} mō te x ki tērā atu whārite, x-3y=6.
-\frac{15}{4}y+\frac{15}{2}=6
Tāpiri -\frac{3y}{4} ki te -3y.
-\frac{15}{4}y=-\frac{3}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
y=\frac{2}{5}
Whakawehea ngā taha e rua o te whārite ki te -\frac{15}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\times \frac{2}{5}+\frac{15}{2}
Whakaurua te \frac{2}{5} mō y ki x=-\frac{3}{4}y+\frac{15}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{3}{10}+\frac{15}{2}
Whakareatia -\frac{3}{4} ki te \frac{2}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{36}{5}
Tāpiri \frac{15}{2} ki te -\frac{3}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{36}{5},y=\frac{2}{5}
Kua oti te pūnaha te whakatau.
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{2}{3}&\frac{1}{2}\\1&-3\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}&-\frac{\frac{1}{2}}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}\\-\frac{1}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}&\frac{\frac{2}{3}}{\frac{2}{3}\left(-3\right)-\frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{4}{15}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\times 5+\frac{1}{5}\times 6\\\frac{2}{5}\times 5-\frac{4}{15}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{36}{5}\\\frac{2}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{36}{5},y=\frac{2}{5}
Tangohia ngā huānga poukapa x me y.
\frac{2}{3}x+\frac{1}{2}y=5,x-3y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{2}{3}x+\frac{1}{2}y=5,\frac{2}{3}x+\frac{2}{3}\left(-3\right)y=\frac{2}{3}\times 6
Kia ōrite ai a \frac{2x}{3} me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{2}{3}.
\frac{2}{3}x+\frac{1}{2}y=5,\frac{2}{3}x-2y=4
Whakarūnātia.
\frac{2}{3}x-\frac{2}{3}x+\frac{1}{2}y+2y=5-4
Me tango \frac{2}{3}x-2y=4 mai i \frac{2}{3}x+\frac{1}{2}y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\frac{1}{2}y+2y=5-4
Tāpiri \frac{2x}{3} ki te -\frac{2x}{3}. Ka whakakore atu ngā kupu \frac{2x}{3} me -\frac{2x}{3}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\frac{5}{2}y=5-4
Tāpiri \frac{y}{2} ki te 2y.
\frac{5}{2}y=1
Tāpiri 5 ki te -4.
y=\frac{2}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x-3\times \frac{2}{5}=6
Whakaurua te \frac{2}{5} mō y ki x-3y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{6}{5}=6
Whakareatia -3 ki te \frac{2}{5}.
x=\frac{36}{5}
Me tāpiri \frac{6}{5} ki ngā taha e rua o te whārite.
x=\frac{36}{5},y=\frac{2}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}