\left\{ \begin{array} { l } { \frac { 10 - V _ { 1 } } { 10 } - \frac { V _ { 1 } } { 21 } - 3 - \frac { V _ { 1 } - V _ { 2 } } { 10 } = 0 } \\ { 3 + \frac { V _ { 1 } - V _ { 2 } } { 10 } - \frac { V _ { 2 } + 5 V _ { 0 } } { 10 } = 0 } \\ { V _ { 1 } + V _ { 0 } = 10 } \end{array} \right.
Whakaoti mō V_1, V_2, V_0
V_{1} = \frac{630}{11} = 57\frac{3}{11} \approx 57.272727273
V_{2} = \frac{1780}{11} = 161\frac{9}{11} \approx 161.818181818
V_{0} = -\frac{520}{11} = -47\frac{3}{11} \approx -47.272727273
Tohaina
Kua tāruatia ki te papatopenga
-420-52V_{1}+21V_{2}=0 30+V_{1}-2V_{2}-5V_{0}=0 V_{1}+V_{0}=10
Me whakarea ia whārite mā te taurea pātahi iti rawa o ngā tauraro kei roto. Whakarūnātia.
30+V_{1}-2V_{2}-5V_{0}=0 -420-52V_{1}+21V_{2}=0 V_{1}+V_{0}=10
Me raupapa anō ngā whārite.
V_{1}=-30+2V_{2}+5V_{0}
Me whakaoti te 30+V_{1}-2V_{2}-5V_{0}=0 mō V_{1}.
-420-52\left(-30+2V_{2}+5V_{0}\right)+21V_{2}=0 -30+2V_{2}+5V_{0}+V_{0}=10
Whakakapia te -30+2V_{2}+5V_{0} mō te V_{1} i te whārite tuarua me te tuatoru.
V_{2}=\frac{1140}{83}-\frac{260}{83}V_{0} V_{0}=\frac{20}{3}-\frac{1}{3}V_{2}
Me whakaoti ēnei whārite mō V_{2} me V_{0} takitahi.
V_{0}=\frac{20}{3}-\frac{1}{3}\left(\frac{1140}{83}-\frac{260}{83}V_{0}\right)
Whakakapia te \frac{1140}{83}-\frac{260}{83}V_{0} mō te V_{2} i te whārite V_{0}=\frac{20}{3}-\frac{1}{3}V_{2}.
V_{0}=-\frac{520}{11}
Me whakaoti te V_{0}=\frac{20}{3}-\frac{1}{3}\left(\frac{1140}{83}-\frac{260}{83}V_{0}\right) mō V_{0}.
V_{2}=\frac{1140}{83}-\frac{260}{83}\left(-\frac{520}{11}\right)
Whakakapia te -\frac{520}{11} mō te V_{0} i te whārite V_{2}=\frac{1140}{83}-\frac{260}{83}V_{0}.
V_{2}=\frac{1780}{11}
Tātaitia te V_{2} i te V_{2}=\frac{1140}{83}-\frac{260}{83}\left(-\frac{520}{11}\right).
V_{1}=-30+2\times \frac{1780}{11}+5\left(-\frac{520}{11}\right)
Whakakapia te \frac{1780}{11} mō te V_{2} me te -\frac{520}{11} mō V_{0} i te whārite V_{1}=-30+2V_{2}+5V_{0}.
V_{1}=\frac{630}{11}
Tātaitia te V_{1} i te V_{1}=-30+2\times \frac{1780}{11}+5\left(-\frac{520}{11}\right).
V_{1}=\frac{630}{11} V_{2}=\frac{1780}{11} V_{0}=-\frac{520}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}