Tīpoka ki ngā ihirangi matua
Whakaoti mō V_1, V_2, V_0
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-420-52V_{1}+21V_{2}=0 30+V_{1}-2V_{2}-5V_{0}=0 V_{1}+V_{0}=10
Me whakarea ia whārite mā te taurea pātahi iti rawa o ngā tauraro kei roto. Whakarūnātia.
30+V_{1}-2V_{2}-5V_{0}=0 -420-52V_{1}+21V_{2}=0 V_{1}+V_{0}=10
Me raupapa anō ngā whārite.
V_{1}=-30+2V_{2}+5V_{0}
Me whakaoti te 30+V_{1}-2V_{2}-5V_{0}=0 mō V_{1}.
-420-52\left(-30+2V_{2}+5V_{0}\right)+21V_{2}=0 -30+2V_{2}+5V_{0}+V_{0}=10
Whakakapia te -30+2V_{2}+5V_{0} mō te V_{1} i te whārite tuarua me te tuatoru.
V_{2}=\frac{1140}{83}-\frac{260}{83}V_{0} V_{0}=\frac{20}{3}-\frac{1}{3}V_{2}
Me whakaoti ēnei whārite mō V_{2} me V_{0} takitahi.
V_{0}=\frac{20}{3}-\frac{1}{3}\left(\frac{1140}{83}-\frac{260}{83}V_{0}\right)
Whakakapia te \frac{1140}{83}-\frac{260}{83}V_{0} mō te V_{2} i te whārite V_{0}=\frac{20}{3}-\frac{1}{3}V_{2}.
V_{0}=-\frac{520}{11}
Me whakaoti te V_{0}=\frac{20}{3}-\frac{1}{3}\left(\frac{1140}{83}-\frac{260}{83}V_{0}\right) mō V_{0}.
V_{2}=\frac{1140}{83}-\frac{260}{83}\left(-\frac{520}{11}\right)
Whakakapia te -\frac{520}{11} mō te V_{0} i te whārite V_{2}=\frac{1140}{83}-\frac{260}{83}V_{0}.
V_{2}=\frac{1780}{11}
Tātaitia te V_{2} i te V_{2}=\frac{1140}{83}-\frac{260}{83}\left(-\frac{520}{11}\right).
V_{1}=-30+2\times \frac{1780}{11}+5\left(-\frac{520}{11}\right)
Whakakapia te \frac{1780}{11} mō te V_{2} me te -\frac{520}{11} mō V_{0} i te whārite V_{1}=-30+2V_{2}+5V_{0}.
V_{1}=\frac{630}{11}
Tātaitia te V_{1} i te V_{1}=-30+2\times \frac{1780}{11}+5\left(-\frac{520}{11}\right).
V_{1}=\frac{630}{11} V_{2}=\frac{1780}{11} V_{0}=-\frac{520}{11}
Kua oti te pūnaha te whakatau.