\left\{ \begin{array} { l } { \frac { 1 } { 5 } x - 2 y = 10 } \\ { 3 x - \frac { 3 } { 2 } y = 36 } \end{array} \right.
Whakaoti mō x, y
x=10
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{5}x-2y=10,3x-\frac{3}{2}y=36
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{5}x-2y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{5}x=2y+10
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=5\left(2y+10\right)
Me whakarea ngā taha e rua ki te 5.
x=10y+50
Whakareatia 5 ki te 10+2y.
3\left(10y+50\right)-\frac{3}{2}y=36
Whakakapia te 50+10y mō te x ki tērā atu whārite, 3x-\frac{3}{2}y=36.
30y+150-\frac{3}{2}y=36
Whakareatia 3 ki te 50+10y.
\frac{57}{2}y+150=36
Tāpiri 30y ki te -\frac{3y}{2}.
\frac{57}{2}y=-114
Me tango 150 mai i ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te \frac{57}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=10\left(-4\right)+50
Whakaurua te -4 mō y ki x=10y+50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-40+50
Whakareatia 10 ki te -4.
x=10
Tāpiri 50 ki te -40.
x=10,y=-4
Kua oti te pūnaha te whakatau.
\frac{1}{5}x-2y=10,3x-\frac{3}{2}y=36
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}\frac{1}{5}&-2\\3&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\36\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{5}&-2\\3&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{5}&-2\\3&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&-2\\3&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}10\\36\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{5}&-2\\3&-\frac{3}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&-2\\3&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}10\\36\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{5}&-2\\3&-\frac{3}{2}\end{matrix}\right))\left(\begin{matrix}10\\36\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{3}{2}}{\frac{1}{5}\left(-\frac{3}{2}\right)-\left(-2\times 3\right)}&-\frac{-2}{\frac{1}{5}\left(-\frac{3}{2}\right)-\left(-2\times 3\right)}\\-\frac{3}{\frac{1}{5}\left(-\frac{3}{2}\right)-\left(-2\times 3\right)}&\frac{\frac{1}{5}}{\frac{1}{5}\left(-\frac{3}{2}\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\36\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{19}&\frac{20}{57}\\-\frac{10}{19}&\frac{2}{57}\end{matrix}\right)\left(\begin{matrix}10\\36\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{19}\times 10+\frac{20}{57}\times 36\\-\frac{10}{19}\times 10+\frac{2}{57}\times 36\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=-4
Tangohia ngā huānga poukapa x me y.
\frac{1}{5}x-2y=10,3x-\frac{3}{2}y=36
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times \frac{1}{5}x+3\left(-2\right)y=3\times 10,\frac{1}{5}\times 3x+\frac{1}{5}\left(-\frac{3}{2}\right)y=\frac{1}{5}\times 36
Kia ōrite ai a \frac{x}{5} me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{5}.
\frac{3}{5}x-6y=30,\frac{3}{5}x-\frac{3}{10}y=\frac{36}{5}
Whakarūnātia.
\frac{3}{5}x-\frac{3}{5}x-6y+\frac{3}{10}y=30-\frac{36}{5}
Me tango \frac{3}{5}x-\frac{3}{10}y=\frac{36}{5} mai i \frac{3}{5}x-6y=30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+\frac{3}{10}y=30-\frac{36}{5}
Tāpiri \frac{3x}{5} ki te -\frac{3x}{5}. Ka whakakore atu ngā kupu \frac{3x}{5} me -\frac{3x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-\frac{57}{10}y=30-\frac{36}{5}
Tāpiri -6y ki te \frac{3y}{10}.
-\frac{57}{10}y=\frac{114}{5}
Tāpiri 30 ki te -\frac{36}{5}.
y=-4
Whakawehea ngā taha e rua o te whārite ki te -\frac{57}{10}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
3x-\frac{3}{2}\left(-4\right)=36
Whakaurua te -4 mō y ki 3x-\frac{3}{2}y=36. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+6=36
Whakareatia -\frac{3}{2} ki te -4.
3x=30
Me tango 6 mai i ngā taha e rua o te whārite.
x=10
Whakawehea ngā taha e rua ki te 3.
x=10,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}