\left\{ \begin{array} { l } { \frac { \sqrt { 3 } } { 2 } T - \frac { 1 } { 2 } N = 1 } \\ { \frac { 1 } { 2 } T + \frac { \sqrt { 3 } } { 2 } N = 0.5 \times 9.8 } \end{array} \right.
Whakaoti mō T, N
T=\frac{\sqrt{3}}{2}+2.45\approx 3.316025404
N=\frac{49\sqrt{3}}{20}-0.5\approx 3.743524479
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{3}}{2}T-\frac{1}{2}N=1,\frac{1}{2}T+\frac{\sqrt{3}}{2}N=4.9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{\sqrt{3}}{2}T-\frac{1}{2}N=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te T mā te wehe i te T i te taha mauī o te tohu ōrite.
\frac{\sqrt{3}}{2}T=\frac{1}{2}N+1
Me tāpiri \frac{N}{2} ki ngā taha e rua o te whārite.
T=\frac{2\sqrt{3}}{3}\left(\frac{1}{2}N+1\right)
Whakawehea ngā taha e rua ki te \frac{\sqrt{3}}{2}.
T=\frac{\sqrt{3}}{3}N+\frac{2\sqrt{3}}{3}
Whakareatia \frac{2\sqrt{3}}{3} ki te \frac{N}{2}+1.
\frac{1}{2}\left(\frac{\sqrt{3}}{3}N+\frac{2\sqrt{3}}{3}\right)+\frac{\sqrt{3}}{2}N=4.9
Whakakapia te \frac{\left(2+N\right)\sqrt{3}}{3} mō te T ki tērā atu whārite, \frac{1}{2}T+\frac{\sqrt{3}}{2}N=4.9.
\frac{\sqrt{3}}{6}N+\frac{\sqrt{3}}{3}+\frac{\sqrt{3}}{2}N=4.9
Whakareatia \frac{1}{2} ki te \frac{\left(2+N\right)\sqrt{3}}{3}.
\frac{2\sqrt{3}}{3}N+\frac{\sqrt{3}}{3}=4.9
Tāpiri \frac{\sqrt{3}N}{6} ki te \frac{\sqrt{3}N}{2}.
\frac{2\sqrt{3}}{3}N=-\frac{\sqrt{3}}{3}+\frac{49}{10}
Me tango \frac{\sqrt{3}}{3} mai i ngā taha e rua o te whārite.
N=\frac{49\sqrt{3}}{20}-\frac{1}{2}
Whakawehea ngā taha e rua ki te \frac{2\sqrt{3}}{3}.
T=\frac{\sqrt{3}}{3}\left(\frac{49\sqrt{3}}{20}-\frac{1}{2}\right)+\frac{2\sqrt{3}}{3}
Whakaurua te \frac{49\sqrt{3}}{20}-\frac{1}{2} mō N ki T=\frac{\sqrt{3}}{3}N+\frac{2\sqrt{3}}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō T hāngai tonu.
T=-\frac{\sqrt{3}}{6}+\frac{49}{20}+\frac{2\sqrt{3}}{3}
Whakareatia \frac{\sqrt{3}}{3} ki te \frac{49\sqrt{3}}{20}-\frac{1}{2}.
T=\frac{\sqrt{3}}{2}+\frac{49}{20}
Tāpiri \frac{2\sqrt{3}}{3} ki te \frac{49}{20}-\frac{\sqrt{3}}{6}.
T=\frac{\sqrt{3}}{2}+\frac{49}{20},N=\frac{49\sqrt{3}}{20}-\frac{1}{2}
Kua oti te pūnaha te whakatau.
\frac{\sqrt{3}}{2}T-\frac{1}{2}N=1,\frac{1}{2}T+\frac{\sqrt{3}}{2}N=4.9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
\frac{1}{2}\times \frac{\sqrt{3}}{2}T+\frac{1}{2}\left(-\frac{1}{2}\right)N=\frac{1}{2},\frac{\sqrt{3}}{2}\times \frac{1}{2}T+\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}N=\frac{\sqrt{3}}{2}\times 4.9
Kia ōrite ai a \frac{\sqrt{3}T}{2} me \frac{T}{2}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te \frac{1}{2} me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te \frac{1}{2}\sqrt{3}.
\frac{\sqrt{3}}{4}T-\frac{1}{4}N=\frac{1}{2},\frac{\sqrt{3}}{4}T+\frac{3}{4}N=\frac{49\sqrt{3}}{20}
Whakarūnātia.
\frac{\sqrt{3}}{4}T+\left(-\frac{\sqrt{3}}{4}\right)T-\frac{1}{4}N-\frac{3}{4}N=\frac{1}{2}-\frac{49\sqrt{3}}{20}
Me tango \frac{\sqrt{3}}{4}T+\frac{3}{4}N=\frac{49\sqrt{3}}{20} mai i \frac{\sqrt{3}}{4}T-\frac{1}{4}N=\frac{1}{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-\frac{1}{4}N-\frac{3}{4}N=\frac{1}{2}-\frac{49\sqrt{3}}{20}
Tāpiri \frac{\sqrt{3}T}{4} ki te -\frac{\sqrt{3}T}{4}. Ka whakakore atu ngā kupu \frac{\sqrt{3}T}{4} me -\frac{\sqrt{3}T}{4}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-N=\frac{1}{2}-\frac{49\sqrt{3}}{20}
Tāpiri -\frac{N}{4} ki te -\frac{3N}{4}.
-N=-\frac{49\sqrt{3}}{20}+\frac{1}{2}
Tāpiri \frac{1}{2} ki te -\frac{49\sqrt{3}}{20}.
N=\frac{49\sqrt{3}}{20}-\frac{1}{2}
Whakawehea ngā taha e rua ki te -1.
\frac{1}{2}T+\frac{\sqrt{3}}{2}\left(\frac{49\sqrt{3}}{20}-\frac{1}{2}\right)=4.9
Whakaurua te -\frac{1}{2}+\frac{49\sqrt{3}}{20} mō N ki \frac{1}{2}T+\frac{\sqrt{3}}{2}N=4.9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō T hāngai tonu.
\frac{1}{2}T-\frac{\sqrt{3}}{4}+\frac{147}{40}=4.9
Whakareatia \frac{1}{2}\sqrt{3} ki te -\frac{1}{2}+\frac{49\sqrt{3}}{20}.
\frac{1}{2}T=\frac{\sqrt{3}}{4}+\frac{49}{40}
Me tango -\frac{\sqrt{3}}{4}+\frac{147}{40} mai i ngā taha e rua o te whārite.
T=\frac{\sqrt{3}}{2}+\frac{49}{20}
Me whakarea ngā taha e rua ki te 2.
T=\frac{\sqrt{3}}{2}+\frac{49}{20},N=\frac{49\sqrt{3}}{20}-\frac{1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}