Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-2x=1
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y+5x=15
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
y-2x=1,y+5x=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-2x=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=2x+1
Me tāpiri 2x ki ngā taha e rua o te whārite.
2x+1+5x=15
Whakakapia te 2x+1 mō te y ki tērā atu whārite, y+5x=15.
7x+1=15
Tāpiri 2x ki te 5x.
7x=14
Me tango 1 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 7.
y=2\times 2+1
Whakaurua te 2 mō x ki y=2x+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=4+1
Whakareatia 2 ki te 2.
y=5
Tāpiri 1 ki te 4.
y=5,x=2
Kua oti te pūnaha te whakatau.
y-2x=1
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y+5x=15
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
y-2x=1,y+5x=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1&-2\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&5\end{matrix}\right))\left(\begin{matrix}1\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-2\right)}&-\frac{-2}{5-\left(-2\right)}\\-\frac{1}{5-\left(-2\right)}&\frac{1}{5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}1\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&\frac{2}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}1\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}+\frac{2}{7}\times 15\\-\frac{1}{7}+\frac{1}{7}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=5,x=2
Tangohia ngā huānga poukapa y me x.
y-2x=1
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y+5x=15
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
y-2x=1,y+5x=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-2x-5x=1-15
Me tango y+5x=15 mai i y-2x=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2x-5x=1-15
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7x=1-15
Tāpiri -2x ki te -5x.
-7x=-14
Tāpiri 1 ki te -15.
x=2
Whakawehea ngā taha e rua ki te -7.
y+5\times 2=15
Whakaurua te 2 mō x ki y+5x=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+10=15
Whakareatia 5 ki te 2.
y=5
Me tango 10 mai i ngā taha e rua o te whārite.
y=5,x=2
Kua oti te pūnaha te whakatau.