Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+2x=2
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=2,5y+2x=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+2x=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-2x+2
Me tango 2x mai i ngā taha e rua o te whārite.
5\left(-2x+2\right)+2x=14
Whakakapia te -2x+2 mō te y ki tērā atu whārite, 5y+2x=14.
-10x+10+2x=14
Whakareatia 5 ki te -2x+2.
-8x+10=14
Tāpiri -10x ki te 2x.
-8x=4
Me tango 10 mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}
Whakawehea ngā taha e rua ki te -8.
y=-2\left(-\frac{1}{2}\right)+2
Whakaurua te -\frac{1}{2} mō x ki y=-2x+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=1+2
Whakareatia -2 ki te -\frac{1}{2}.
y=3
Tāpiri 2 ki te 1.
y=3,x=-\frac{1}{2}
Kua oti te pūnaha te whakatau.
y+2x=2
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=2,5y+2x=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}1&2\\5&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\5&2\end{matrix}\right))\left(\begin{matrix}2\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-2\times 5}&-\frac{2}{2-2\times 5}\\-\frac{5}{2-2\times 5}&\frac{1}{2-2\times 5}\end{matrix}\right)\left(\begin{matrix}2\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{5}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}2\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 2+\frac{1}{4}\times 14\\\frac{5}{8}\times 2-\frac{1}{8}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\-\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
y=3,x=-\frac{1}{2}
Tangohia ngā huānga poukapa y me x.
y+2x=2
Whakaarohia te whārite tuatahi. Me tāpiri te 2x ki ngā taha e rua.
y+2x=2,5y+2x=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-5y+2x-2x=2-14
Me tango 5y+2x=14 mai i y+2x=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-5y=2-14
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y=2-14
Tāpiri y ki te -5y.
-4y=-12
Tāpiri 2 ki te -14.
y=3
Whakawehea ngā taha e rua ki te -4.
5\times 3+2x=14
Whakaurua te 3 mō y ki 5y+2x=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
15+2x=14
Whakareatia 5 ki te 3.
2x=-1
Me tango 15 mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 2.
y=3,x=-\frac{1}{2}
Kua oti te pūnaha te whakatau.