\left\{ \begin{array} { c } { x - 4 y = - 13 } \\ { 6 x + 4 y = 6 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-4y=-13,6x+4y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-4y=-13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=4y-13
Me tāpiri 4y ki ngā taha e rua o te whārite.
6\left(4y-13\right)+4y=6
Whakakapia te 4y-13 mō te x ki tērā atu whārite, 6x+4y=6.
24y-78+4y=6
Whakareatia 6 ki te 4y-13.
28y-78=6
Tāpiri 24y ki te 4y.
28y=84
Me tāpiri 78 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 28.
x=4\times 3-13
Whakaurua te 3 mō y ki x=4y-13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=12-13
Whakareatia 4 ki te 3.
x=-1
Tāpiri -13 ki te 12.
x=-1,y=3
Kua oti te pūnaha te whakatau.
x-4y=-13,6x+4y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}1&-4\\6&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-4\\6&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\6&4\end{matrix}\right))\left(\begin{matrix}-13\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-4\times 6\right)}&-\frac{-4}{4-\left(-4\times 6\right)}\\-\frac{6}{4-\left(-4\times 6\right)}&\frac{1}{4-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}-13\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{3}{14}&\frac{1}{28}\end{matrix}\right)\left(\begin{matrix}-13\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\left(-13\right)+\frac{1}{7}\times 6\\-\frac{3}{14}\left(-13\right)+\frac{1}{28}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=3
Tangohia ngā huānga poukapa x me y.
x-4y=-13,6x+4y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x+6\left(-4\right)y=6\left(-13\right),6x+4y=6
Kia ōrite ai a x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
6x-24y=-78,6x+4y=6
Whakarūnātia.
6x-6x-24y-4y=-78-6
Me tango 6x+4y=6 mai i 6x-24y=-78 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-24y-4y=-78-6
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-28y=-78-6
Tāpiri -24y ki te -4y.
-28y=-84
Tāpiri -78 ki te -6.
y=3
Whakawehea ngā taha e rua ki te -28.
6x+4\times 3=6
Whakaurua te 3 mō y ki 6x+4y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+12=6
Whakareatia 4 ki te 3.
6x=-6
Me tango 12 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 6.
x=-1,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}