\left\{ \begin{array} { c } { x - 3 - 2 ( y + 1 ) = - 12 } \\ { 3 ( x - 2 y ) - 2 y = - 21 } \end{array} \right.
Whakaoti mō x, y
x=-7
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3-2y-2=-12
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y+1.
x-5-2y=-12
Tangohia te 2 i te -3, ka -5.
x-2y=-12+5
Me tāpiri te 5 ki ngā taha e rua.
x-2y=-7
Tāpirihia te -12 ki te 5, ka -7.
3x-6y-2y=-21
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2y.
3x-8y=-21
Pahekotia te -6y me -2y, ka -8y.
x-2y=-7,3x-8y=-21
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-2y=-7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=2y-7
Me tāpiri 2y ki ngā taha e rua o te whārite.
3\left(2y-7\right)-8y=-21
Whakakapia te 2y-7 mō te x ki tērā atu whārite, 3x-8y=-21.
6y-21-8y=-21
Whakareatia 3 ki te 2y-7.
-2y-21=-21
Tāpiri 6y ki te -8y.
-2y=0
Me tāpiri 21 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te -2.
x=-7
Whakaurua te 0 mō y ki x=2y-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-7,y=0
Kua oti te pūnaha te whakatau.
x-3-2y-2=-12
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y+1.
x-5-2y=-12
Tangohia te 2 i te -3, ka -5.
x-2y=-12+5
Me tāpiri te 5 ki ngā taha e rua.
x-2y=-7
Tāpirihia te -12 ki te 5, ka -7.
3x-6y-2y=-21
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2y.
3x-8y=-21
Pahekotia te -6y me -2y, ka -8y.
x-2y=-7,3x-8y=-21
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\3&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-21\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\3&-8\end{matrix}\right))\left(\begin{matrix}1&-2\\3&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-8\end{matrix}\right))\left(\begin{matrix}-7\\-21\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\3&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-8\end{matrix}\right))\left(\begin{matrix}-7\\-21\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\3&-8\end{matrix}\right))\left(\begin{matrix}-7\\-21\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-\left(-2\times 3\right)}&-\frac{-2}{-8-\left(-2\times 3\right)}\\-\frac{3}{-8-\left(-2\times 3\right)}&\frac{1}{-8-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-7\\-21\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-1\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-7\\-21\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\left(-7\right)-\left(-21\right)\\\frac{3}{2}\left(-7\right)-\frac{1}{2}\left(-21\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=-7,y=0
Tangohia ngā huānga poukapa x me y.
x-3-2y-2=-12
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te y+1.
x-5-2y=-12
Tangohia te 2 i te -3, ka -5.
x-2y=-12+5
Me tāpiri te 5 ki ngā taha e rua.
x-2y=-7
Tāpirihia te -12 ki te 5, ka -7.
3x-6y-2y=-21
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-2y.
3x-8y=-21
Pahekotia te -6y me -2y, ka -8y.
x-2y=-7,3x-8y=-21
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x+3\left(-2\right)y=3\left(-7\right),3x-8y=-21
Kia ōrite ai a x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3x-6y=-21,3x-8y=-21
Whakarūnātia.
3x-3x-6y+8y=-21+21
Me tango 3x-8y=-21 mai i 3x-6y=-21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+8y=-21+21
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2y=-21+21
Tāpiri -6y ki te 8y.
2y=0
Tāpiri -21 ki te 21.
y=0
Whakawehea ngā taha e rua ki te 2.
3x=-21
Whakaurua te 0 mō y ki 3x-8y=-21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-7
Whakawehea ngā taha e rua ki te 3.
x=-7,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}