Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+4y=12,2x-y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+4y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-4y+12
Me tango 4y mai i ngā taha e rua o te whārite.
2\left(-4y+12\right)-y=6
Whakakapia te -4y+12 mō te x ki tērā atu whārite, 2x-y=6.
-8y+24-y=6
Whakareatia 2 ki te -4y+12.
-9y+24=6
Tāpiri -8y ki te -y.
-9y=-18
Me tango 24 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -9.
x=-4\times 2+12
Whakaurua te 2 mō y ki x=-4y+12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-8+12
Whakareatia -4 ki te 2.
x=4
Tāpiri 12 ki te -8.
x=4,y=2
Kua oti te pūnaha te whakatau.
x+4y=12,2x-y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\2&-1\end{matrix}\right))\left(\begin{matrix}1&4\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&-1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-4\times 2}&-\frac{4}{-1-4\times 2}\\-\frac{2}{-1-4\times 2}&\frac{1}{-1-4\times 2}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{4}{9}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 12+\frac{4}{9}\times 6\\\frac{2}{9}\times 12-\frac{1}{9}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=2
Tangohia ngā huānga poukapa x me y.
x+4y=12,2x-y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\times 4y=2\times 12,2x-y=6
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+8y=24,2x-y=6
Whakarūnātia.
2x-2x+8y+y=24-6
Me tango 2x-y=6 mai i 2x+8y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y+y=24-6
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9y=24-6
Tāpiri 8y ki te y.
9y=18
Tāpiri 24 ki te -6.
y=2
Whakawehea ngā taha e rua ki te 9.
2x-2=6
Whakaurua te 2 mō y ki 2x-y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=8
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 2.
x=4,y=2
Kua oti te pūnaha te whakatau.