\left\{ \begin{array} { c } { x + 2 y + 3 z = 1 } \\ { 5 x + 3 y + 20 z = 0 } \\ { 3 x + 4 y + 8 z = 3 } \end{array} \right.
Whakaoti mō x, y, z
x = \frac{37}{17} = 2\frac{3}{17} \approx 2.176470588
y=\frac{5}{17}\approx 0.294117647
z=-\frac{10}{17}\approx -0.588235294
Tohaina
Kua tāruatia ki te papatopenga
x=-2y-3z+1
Me whakaoti te x+2y+3z=1 mō x.
5\left(-2y-3z+1\right)+3y+20z=0 3\left(-2y-3z+1\right)+4y+8z=3
Whakakapia te -2y-3z+1 mō te x i te whārite tuarua me te tuatoru.
y=\frac{5}{7}+\frac{5}{7}z z=-2y
Me whakaoti ēnei whārite mō y me z takitahi.
z=-2\left(\frac{5}{7}+\frac{5}{7}z\right)
Whakakapia te \frac{5}{7}+\frac{5}{7}z mō te y i te whārite z=-2y.
z=-\frac{10}{17}
Me whakaoti te z=-2\left(\frac{5}{7}+\frac{5}{7}z\right) mō z.
y=\frac{5}{7}+\frac{5}{7}\left(-\frac{10}{17}\right)
Whakakapia te -\frac{10}{17} mō te z i te whārite y=\frac{5}{7}+\frac{5}{7}z.
y=\frac{5}{17}
Tātaitia te y i te y=\frac{5}{7}+\frac{5}{7}\left(-\frac{10}{17}\right).
x=-2\times \frac{5}{17}-3\left(-\frac{10}{17}\right)+1
Whakakapia te \frac{5}{17} mō te y me te -\frac{10}{17} mō z i te whārite x=-2y-3z+1.
x=\frac{37}{17}
Tātaitia te x i te x=-2\times \frac{5}{17}-3\left(-\frac{10}{17}\right)+1.
x=\frac{37}{17} y=\frac{5}{17} z=-\frac{10}{17}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}