Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x-4y=-1,x+y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x-4y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=4y-1
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{8}\left(4y-1\right)
Whakawehea ngā taha e rua ki te 8.
x=\frac{1}{2}y-\frac{1}{8}
Whakareatia \frac{1}{8} ki te 4y-1.
\frac{1}{2}y-\frac{1}{8}+y=1
Whakakapia te \frac{y}{2}-\frac{1}{8} mō te x ki tērā atu whārite, x+y=1.
\frac{3}{2}y-\frac{1}{8}=1
Tāpiri \frac{y}{2} ki te y.
\frac{3}{2}y=\frac{9}{8}
Me tāpiri \frac{1}{8} ki ngā taha e rua o te whārite.
y=\frac{3}{4}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\times \frac{3}{4}-\frac{1}{8}
Whakaurua te \frac{3}{4} mō y ki x=\frac{1}{2}y-\frac{1}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3-1}{8}
Whakareatia \frac{1}{2} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{4}
Tāpiri -\frac{1}{8} ki te \frac{3}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{4},y=\frac{3}{4}
Kua oti te pūnaha te whakatau.
8x-4y=-1,x+y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&-4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&-4\\1&1\end{matrix}\right))\left(\begin{matrix}8&-4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&-4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8-\left(-4\right)}&-\frac{-4}{8-\left(-4\right)}\\-\frac{1}{8-\left(-4\right)}&\frac{8}{8-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-1\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}&\frac{1}{3}\\-\frac{1}{12}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\left(-1\right)+\frac{1}{3}\\-\frac{1}{12}\left(-1\right)+\frac{2}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\\frac{3}{4}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{4},y=\frac{3}{4}
Tangohia ngā huānga poukapa x me y.
8x-4y=-1,x+y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8x-4y=-1,8x+8y=8
Kia ōrite ai a 8x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
8x-8x-4y-8y=-1-8
Me tango 8x+8y=8 mai i 8x-4y=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4y-8y=-1-8
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12y=-1-8
Tāpiri -4y ki te -8y.
-12y=-9
Tāpiri -1 ki te -8.
y=\frac{3}{4}
Whakawehea ngā taha e rua ki te -12.
x+\frac{3}{4}=1
Whakaurua te \frac{3}{4} mō y ki x+y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{4}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
x=\frac{1}{4},y=\frac{3}{4}
Kua oti te pūnaha te whakatau.