\left\{ \begin{array} { c } { 8 p + 4 q - 3 r = 6 } \\ { p + 3 q - r = 7 } \\ { 4 r - 8 = 5 q - 4 p } \end{array} \right.
Whakaoti mō p, q, r
r=6
p=1
q=4
Tohaina
Kua tāruatia ki te papatopenga
p+3q-r=7 8p+4q-3r=6 4r-8=5q-4p
Me raupapa anō ngā whārite.
p=-3q+r+7
Me whakaoti te p+3q-r=7 mō p.
8\left(-3q+r+7\right)+4q-3r=6 4r-8=5q-4\left(-3q+r+7\right)
Whakakapia te -3q+r+7 mō te p i te whārite tuarua me te tuatoru.
q=\frac{5}{2}+\frac{1}{4}r r=-\frac{5}{2}+\frac{17}{8}q
Me whakaoti ēnei whārite mō q me r takitahi.
r=-\frac{5}{2}+\frac{17}{8}\left(\frac{5}{2}+\frac{1}{4}r\right)
Whakakapia te \frac{5}{2}+\frac{1}{4}r mō te q i te whārite r=-\frac{5}{2}+\frac{17}{8}q.
r=6
Me whakaoti te r=-\frac{5}{2}+\frac{17}{8}\left(\frac{5}{2}+\frac{1}{4}r\right) mō r.
q=\frac{5}{2}+\frac{1}{4}\times 6
Whakakapia te 6 mō te r i te whārite q=\frac{5}{2}+\frac{1}{4}r.
q=4
Tātaitia te q i te q=\frac{5}{2}+\frac{1}{4}\times 6.
p=-3\times 4+6+7
Whakakapia te 4 mō te q me te 6 mō r i te whārite p=-3q+r+7.
p=1
Tātaitia te p i te p=-3\times 4+6+7.
p=1 q=4 r=6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}