Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x-y=5,-2x+3y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=y+5
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(y+5\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{1}{5}y+1
Whakareatia \frac{1}{5} ki te y+5.
-2\left(\frac{1}{5}y+1\right)+3y=11
Whakakapia te \frac{y}{5}+1 mō te x ki tērā atu whārite, -2x+3y=11.
-\frac{2}{5}y-2+3y=11
Whakareatia -2 ki te \frac{y}{5}+1.
\frac{13}{5}y-2=11
Tāpiri -\frac{2y}{5} ki te 3y.
\frac{13}{5}y=13
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{5}\times 5+1
Whakaurua te 5 mō y ki x=\frac{1}{5}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+1
Whakareatia \frac{1}{5} ki te 5.
x=2
Tāpiri 1 ki te 1.
x=2,y=5
Kua oti te pūnaha te whakatau.
5x-y=5,-2x+3y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-1\\-2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\-2&3\end{matrix}\right))\left(\begin{matrix}5\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-\left(-2\right)\right)}&-\frac{-1}{5\times 3-\left(-\left(-2\right)\right)}\\-\frac{-2}{5\times 3-\left(-\left(-2\right)\right)}&\frac{5}{5\times 3-\left(-\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{1}{13}\\\frac{2}{13}&\frac{5}{13}\end{matrix}\right)\left(\begin{matrix}5\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 5+\frac{1}{13}\times 11\\\frac{2}{13}\times 5+\frac{5}{13}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=5
Tangohia ngā huānga poukapa x me y.
5x-y=5,-2x+3y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 5x-2\left(-1\right)y=-2\times 5,5\left(-2\right)x+5\times 3y=5\times 11
Kia ōrite ai a 5x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-10x+2y=-10,-10x+15y=55
Whakarūnātia.
-10x+10x+2y-15y=-10-55
Me tango -10x+15y=55 mai i -10x+2y=-10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-15y=-10-55
Tāpiri -10x ki te 10x. Ka whakakore atu ngā kupu -10x me 10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13y=-10-55
Tāpiri 2y ki te -15y.
-13y=-65
Tāpiri -10 ki te -55.
y=5
Whakawehea ngā taha e rua ki te -13.
-2x+3\times 5=11
Whakaurua te 5 mō y ki -2x+3y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x+15=11
Whakareatia 3 ki te 5.
-2x=-4
Me tango 15 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -2.
x=2,y=5
Kua oti te pūnaha te whakatau.