\left\{ \begin{array} { c } { 4 x - y = 18 } \\ { 3 x + 5 y = 2 } \end{array} \right.
Whakaoti mō x, y
x=4
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-y=18,3x+5y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y+18
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(y+18\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4}y+\frac{9}{2}
Whakareatia \frac{1}{4} ki te y+18.
3\left(\frac{1}{4}y+\frac{9}{2}\right)+5y=2
Whakakapia te \frac{y}{4}+\frac{9}{2} mō te x ki tērā atu whārite, 3x+5y=2.
\frac{3}{4}y+\frac{27}{2}+5y=2
Whakareatia 3 ki te \frac{y}{4}+\frac{9}{2}.
\frac{23}{4}y+\frac{27}{2}=2
Tāpiri \frac{3y}{4} ki te 5y.
\frac{23}{4}y=-\frac{23}{2}
Me tango \frac{27}{2} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{23}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{4}\left(-2\right)+\frac{9}{2}
Whakaurua te -2 mō y ki x=\frac{1}{4}y+\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-1+9}{2}
Whakareatia \frac{1}{4} ki te -2.
x=4
Tāpiri \frac{9}{2} ki te -\frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=-2
Kua oti te pūnaha te whakatau.
4x-y=18,3x+5y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\3&5\end{matrix}\right))\left(\begin{matrix}4&-1\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-\left(-3\right)}&-\frac{-1}{4\times 5-\left(-3\right)}\\-\frac{3}{4\times 5-\left(-3\right)}&\frac{4}{4\times 5-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}18\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}&\frac{1}{23}\\-\frac{3}{23}&\frac{4}{23}\end{matrix}\right)\left(\begin{matrix}18\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}\times 18+\frac{1}{23}\times 2\\-\frac{3}{23}\times 18+\frac{4}{23}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-2
Tangohia ngā huānga poukapa x me y.
4x-y=18,3x+5y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\left(-1\right)y=3\times 18,4\times 3x+4\times 5y=4\times 2
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x-3y=54,12x+20y=8
Whakarūnātia.
12x-12x-3y-20y=54-8
Me tango 12x+20y=8 mai i 12x-3y=54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-20y=54-8
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-23y=54-8
Tāpiri -3y ki te -20y.
-23y=46
Tāpiri 54 ki te -8.
y=-2
Whakawehea ngā taha e rua ki te -23.
3x+5\left(-2\right)=2
Whakaurua te -2 mō y ki 3x+5y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-10=2
Whakareatia 5 ki te -2.
3x=12
Me tāpiri 10 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 3.
x=4,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}